Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Oct 7;267(1456):1931–1937. doi: 10.1098/rspb.2000.1232

Wolbachia-induced 'hybrid breakdown' in the two-spotted spider mite Tetranychus urticae Koch.

F Vala 1, J A Breeuwer 1, M W Sabelis 1
PMCID: PMC1690764  PMID: 11075704

Abstract

The most common post-zygotic isolation mechanism between populations of the phytophagous mite Tetranychus urticae is 'hybrid breakdown', i.e. when individuals from two different populations are crossed, F1 hybrid females are produced, but F2 recombinant male offspring suffer increased mortality. Two-spotted spider mites collected from two populations, one on rose and the other on cucumber plants, were infected with Wolbachia bacteria. These bacteria may induce cytoplasmic incompatibility in their hosts: uninfected (U) females become reproductively incompatible with infected (W) males. We report on the effect of Wolbachia infections in intra- and interstrain crosses on (i) F1 mortality and sex ratios (a test for cytoplasmic incompatibility), and (ii) the number of haploid offspring and mortality in clutches of F1 virgins (a test for hybrid breakdown). U x W crosses within the rose strain exhibited partial cvtoplasmic incompatibility. More interestingly, F2 males suffered increased mortality, a result identical to the hybrid breakdown phenomenon. The experiments were repeated using females from the cucumber strain. In interstrain U x W and U x U crosses, hybrid breakdown was much stronger in the former (80 versus 26%). This is the first report of a Wolbachia infection causing a hybrid breakdown phenotype. Our results show that Wolbhachia infections can contribute to reproductive incompatibility between populations of T. urticae.

Full Text

The Full Text of this article is available as a PDF (199.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourtzis K., Dobson S. L., Braig H. R., O'Neill S. L. Rescuing Wolbachia have been overlooked. Nature. 1998 Feb 26;391(6670):852–853. doi: 10.1038/36017. [DOI] [PubMed] [Google Scholar]
  2. Bourtzis K., Nirgianaki A., Markakis G., Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics. 1996 Nov;144(3):1063–1073. doi: 10.1093/genetics/144.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Jacobs G. Wolbachia: intracellular manipulators of mite reproduction. Exp Appl Acarol. 1996 Aug;20(8):421–434. doi: 10.1007/BF00053306. [DOI] [PubMed] [Google Scholar]
  4. Breeuwer J. A., Werren J. H. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics. 1993 Oct;135(2):565–574. doi: 10.1093/genetics/135.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  6. Bressac C., Rousset F. The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol. 1993 May;61(3):226–230. doi: 10.1006/jipa.1993.1044. [DOI] [PubMed] [Google Scholar]
  7. Callaini G., Dallai R., Riparbelli M. G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci. 1997 Jan;110(Pt 2):271–280. doi: 10.1242/jcs.110.2.271. [DOI] [PubMed] [Google Scholar]
  8. Callaini G., Riparbelli M. G., Dallai R. The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. J Cell Sci. 1994 Mar;107(Pt 3):673–682. doi: 10.1242/jcs.107.3.673. [DOI] [PubMed] [Google Scholar]
  9. Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
  10. Gotoh T., Oku H., Moriya K., Odawara M. Nucleus-cytoplasm interactions causing reproductive incompatibility between two populations of Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Heredity (Edinb) 1995 Apr;74(Pt 4):405–414. doi: 10.1038/hdy.1995.58. [DOI] [PubMed] [Google Scholar]
  11. Hoffmann A. A., Clancy D., Duncan J. Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity (Edinb) 1996 Jan;76(Pt 1):1–8. doi: 10.1038/hdy.1996.1. [DOI] [PubMed] [Google Scholar]
  12. Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holden P. R., Brookfield J. F., Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. doi: 10.1007/BF00277059. [DOI] [PubMed] [Google Scholar]
  15. Kondrashov A. S., Kondrashov F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature. 1999 Jul 22;400(6742):351–354. doi: 10.1038/22514. [DOI] [PubMed] [Google Scholar]
  16. Merçot H., Poinsot D. . . . and discovered on Mount Kilimanjaro. Nature. 1998 Feb 26;391(6670):853–853. doi: 10.1038/36021. [DOI] [PubMed] [Google Scholar]
  17. O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
  18. Overmeer W. P. Intersterility as a consequence of insecticide selections in Tetranychus urticae Koch (Acari: Tetranychidae). Nature. 1966 Jan 15;209(5020):321–321. doi: 10.1038/209321a0. [DOI] [PubMed] [Google Scholar]
  19. Reed K. M., Werren J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev. 1995 Apr;40(4):408–418. doi: 10.1002/mrd.1080400404. [DOI] [PubMed] [Google Scholar]
  20. Ryan S. L., Saul G. B., 2nd Post-fertilization effect of incompatibility factors in Mormoniella. Mol Gen Genet. 1968;103(1):29–36. doi: 10.1007/BF00271154. [DOI] [PubMed] [Google Scholar]
  21. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol. 1995 Nov;81(3):284–291. doi: 10.1006/expr.1995.1119. [DOI] [PubMed] [Google Scholar]
  22. Stevens L., Wade M. J. Cytoplasmically inherited reproductive incompatibility in Tribolium flour beetles: the rate of spread and effect on population size. Genetics. 1990 Feb;124(2):367–372. doi: 10.1093/genetics/124.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stouthamer R., Breeuwer J. A., Hurst G. D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71–102. doi: 10.1146/annurev.micro.53.1.71. [DOI] [PubMed] [Google Scholar]
  24. Tsagkarakou A., Guillemaud T., Rousset F., Navajas M. Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Mol Biol. 1996 Aug;5(3):217–221. doi: 10.1111/j.1365-2583.1996.tb00057.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES