Abstract
What biological attributes predispose species to the risk of extinction? There are many hypotheses but so far there has been no systematic analysis for discriminating between them. Using complete phylogenies of contemporary carnivores and primates, we present, to our knowledge, the first comparative test showing that high trophic level, low population density slow life history and, in particular, small geographical range size are all significantly and independently associated with a high extinction risk in declining species. These traits together explain nearly 50% of the total between-species variation in extinction risk. Much of the remaining variation can be accounted for by external anthropogenic factors that affect species irrespective of their biology.
Full Text
The Full Text of this article is available as a PDF (226.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bininda-Emonds O. R., Gittleman J. L., Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev Camb Philos Soc. 1999 May;74(2):143–175. doi: 10.1017/s0006323199005307. [DOI] [PubMed] [Google Scholar]
- Carbone C., Mace G. M., Roberts S. C., Macdonald D. W. Energetic constraints on the diet of terrestrial carnivores. Nature. 1999 Nov 18;402(6759):286–288. doi: 10.1038/46266. [DOI] [PubMed] [Google Scholar]
- Channell R., Lomolino M. V. Dynamic biogeography and conservation of endangered species. Nature. 2000 Jan 6;403(6765):84–86. doi: 10.1038/47487. [DOI] [PubMed] [Google Scholar]
- Courchamp F, Clutton-Brock T, Grenfell B. Inverse density dependence and the Allee effect. Trends Ecol Evol. 1999 Oct;14(10):405–410. doi: 10.1016/s0169-5347(99)01683-3. [DOI] [PubMed] [Google Scholar]
- Economos A. C. Brain-life span conjecture: a reevaluation of the evidence. Gerontology. 1980;26(2):82–89. doi: 10.1159/000212399. [DOI] [PubMed] [Google Scholar]
- Estes JA, Tinker MT, Williams TM, Doak DF. Killer whale predation on sea otters linking oceanic and nearshore ecosystems . Science. 1998 Oct 16;282(5388):473–476. doi: 10.1126/science.282.5388.473. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0057. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0819. [DOI] [PMC free article] [Google Scholar]
- Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
- Purvis A., Agapow P. M., Gittleman J. L., Mace G. M. Nonrandom extinction and the loss of evolutionary history. Science. 2000 Apr 14;288(5464):328–330. doi: 10.1126/science.288.5464.328. [DOI] [PubMed] [Google Scholar]
- Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
- Raup D. M. The role of extinction in evolution. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6758–6763. doi: 10.1073/pnas.91.15.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodroffe R, Ginsberg JR. Edge effects and the extinction of populations inside protected areas . Science. 1998 Jun 26;280(5372):2126–2128. doi: 10.1126/science.280.5372.2126. [DOI] [PubMed] [Google Scholar]