Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Oct 22;267(1457):2119–2125. doi: 10.1098/rspb.2000.1258

Olfactory coding in a simple system: adaptation in Drosophila larvae.

M Cobb 1, I Domain 1
PMCID: PMC1690778  PMID: 11416918

Abstract

Drosophila melanogaster larvae were pre-stimulated with high concentrations of six homologous alcohols (C4-C9) and then tested for adaptation and cross-adaptation using these same alcohols, four aliphatic n-acetates and three acids. Pre-stimulation with hexanol effectively reduced to zero (abolished) test responses to all six alcohols, whereas test responses to hexanol were only affected by pre-stimulation with hexanol. This substance appears to play a fundamental role in the organization of the larval olfactory system. Test responses to butanol and pentanol, and the effect of pre-stimulation with butanol and pentanol, were not significantly different, indicating that they are sensory equivalents. Heptanol, octanol and nonanol induce a complex set of responses among one another. Cross-adaptation between functional groups was observed, in particular following pre-stimulation with hexanol, but there was also evidence that functional groups are coded separately. A model of olfactory processing in the fruitfly maggot is presented that explains the data and provides predictions for future anatomical, genetic and electrophysiological studies.

Full Text

The Full Text of this article is available as a PDF (141.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ache B. W., Zhainazarov A. Dual second-messenger pathways in olfactory transduction. Curr Opin Neurobiol. 1995 Aug;5(4):461–466. doi: 10.1016/0959-4388(95)80006-9. [DOI] [PubMed] [Google Scholar]
  2. Bargmann C. I., Hartwieg E., Horvitz H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell. 1993 Aug 13;74(3):515–527. doi: 10.1016/0092-8674(93)80053-h. [DOI] [PubMed] [Google Scholar]
  3. Borroni P. F., Atema J. Adaptation in chemoreceptor cells. I. Self-adapting backgrounds determine threshold and cause parallel shift of response function. J Comp Physiol A. 1988 Nov;164(1):67–74. doi: 10.1007/BF00612719. [DOI] [PubMed] [Google Scholar]
  4. Clyne P. J., Warr C. G., Freeman M. R., Lessing D., Kim J., Carlson J. R. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999 Feb;22(2):327–338. doi: 10.1016/s0896-6273(00)81093-4. [DOI] [PubMed] [Google Scholar]
  5. Cobb M., Bruneau S., Jallon J. M. Genetic and developmental factors in the olfactory response of Drosophila melanogaster larvae to alcohols. Proc Biol Sci. 1992 May 22;248(1322):103–109. doi: 10.1098/rspb.1992.0048. [DOI] [PubMed] [Google Scholar]
  6. Cobb M., Dannet F. Multiple genetic control of acetate-induced olfactory responses in Drosophila melanogaster larvae. Heredity (Edinb) 1994 Oct;73(Pt 4):444–455. doi: 10.1038/hdy.1994.192. [DOI] [PubMed] [Google Scholar]
  7. Cobb M. Genotypic and phenotypic characterization of the Drosophila melanogaster olfactory mutation Indifferent. Genetics. 1996 Dec;144(4):1577–1587. doi: 10.1093/genetics/144.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colbert H. A., Bargmann C. I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron. 1995 Apr;14(4):803–812. doi: 10.1016/0896-6273(95)90224-4. [DOI] [PubMed] [Google Scholar]
  9. Daniel P. C., Fine J. B., Derby C. D., Girardot M. N. Non-reciprocal cross-adaptation of spiking responses of individual olfactory receptor neurons of spiny lobsters: evidence for two excitatory transduction pathways. Brain Res. 1994 Apr 18;643(1-2):136–149. doi: 10.1016/0006-8993(94)90019-1. [DOI] [PubMed] [Google Scholar]
  10. Heimbeck G., Bugnon V., Gendre N., Häberlin C., Stocker R. F. Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci. 1999 Aug 1;19(15):6599–6609. doi: 10.1523/JNEUROSCI.19-15-06599.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hildebrand J. G., Shepherd G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci. 1997;20:595–631. doi: 10.1146/annurev.neuro.20.1.595. [DOI] [PubMed] [Google Scholar]
  12. Kawai F., Kurahashi T., Kaneko A. Nonselective suppression of voltage-gated currents by odorants in the newt olfactory receptor cells. J Gen Physiol. 1997 Feb;109(2):265–272. doi: 10.1085/jgp.109.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koshland D. E., Jr Bacterial chemotaxis in relation to neurobiology. Annu Rev Neurosci. 1980;3:43–75. doi: 10.1146/annurev.ne.03.030180.000355. [DOI] [PubMed] [Google Scholar]
  14. Kurahashi T., Shibuya T. Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res. 1990 May 7;515(1-2):261–268. doi: 10.1016/0006-8993(90)90605-b. [DOI] [PubMed] [Google Scholar]
  15. Laurent G. A systems perspective on early olfactory coding. Science. 1999 Oct 22;286(5440):723–728. doi: 10.1126/science.286.5440.723. [DOI] [PubMed] [Google Scholar]
  16. Linster C., Smith B. H. A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav Brain Res. 1997 Aug;87(1):1–14. doi: 10.1016/s0166-4328(96)02271-1. [DOI] [PubMed] [Google Scholar]
  17. Malnic B., Hirono J., Sato T., Buck L. B. Combinatorial receptor codes for odors. Cell. 1999 Mar 5;96(5):713–723. doi: 10.1016/s0092-8674(00)80581-4. [DOI] [PubMed] [Google Scholar]
  18. Monte P., Woodard C., Ayer R., Lilly M., Sun H., Carlson J. Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav Genet. 1989 Mar;19(2):267–283. doi: 10.1007/BF01065910. [DOI] [PubMed] [Google Scholar]
  19. Mori K. Relation of chemical structure to specificity of response in olfactory glomeruli. Curr Opin Neurobiol. 1995 Aug;5(4):467–474. doi: 10.1016/0959-4388(95)80007-7. [DOI] [PubMed] [Google Scholar]
  20. Oppliger F. Y., M Guerin P., Vlimant M. Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J Insect Physiol. 2000 Feb;46(2):135–144. doi: 10.1016/s0022-1910(99)00109-2. [DOI] [PubMed] [Google Scholar]
  21. Sachse S., Rappert A., Galizia C. G. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci. 1999 Nov;11(11):3970–3982. doi: 10.1046/j.1460-9568.1999.00826.x. [DOI] [PubMed] [Google Scholar]
  22. Störtkuhl K. F., Hovemann B. T., Carlson J. R. Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J Neurosci. 1999 Jun 15;19(12):4839–4846. doi: 10.1523/JNEUROSCI.19-12-04839.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tonosaki K., Tucker D. Olfactory receptor cell responses of dog and box turtle to aliphatic n-acetates and aliphatic n-fatty acids. Behav Neural Biol. 1982 Jun;35(2):187–199. doi: 10.1016/s0163-1047(82)91193-1. [DOI] [PubMed] [Google Scholar]
  24. Troemel E. R., Chou J. H., Dwyer N. D., Colbert H. A., Bargmann C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell. 1995 Oct 20;83(2):207–218. doi: 10.1016/0092-8674(95)90162-0. [DOI] [PubMed] [Google Scholar]
  25. Vosshall L. B., Amrein H., Morozov P. S., Rzhetsky A., Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999 Mar 5;96(5):725–736. doi: 10.1016/s0092-8674(00)80582-6. [DOI] [PubMed] [Google Scholar]
  26. Vosshall L. B., Wong A. M., Axel R. An olfactory sensory map in the fly brain. Cell. 2000 Jul 21;102(2):147–159. doi: 10.1016/s0092-8674(00)00021-0. [DOI] [PubMed] [Google Scholar]
  27. Wang H. W., Wysocki C. J., Gold G. H. Induction of olfactory receptor sensitivity in mice. Science. 1993 May 14;260(5110):998–1000. doi: 10.1126/science.8493539. [DOI] [PubMed] [Google Scholar]
  28. de Bruyne M., Clyne P. J., Carlson J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci. 1999 Jun 1;19(11):4520–4532. doi: 10.1523/JNEUROSCI.19-11-04520.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES