Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Oct 22;267(1457):2111–2117. doi: 10.1098/rspb.2000.1257

Sexual dimorphism matches photoreceptor performance to behavioural requirements.

E P Hornstein 1, D C O'Carroll 1, J C Anderson 1, S B Laughlin 1
PMCID: PMC1690788  PMID: 11416917

Abstract

Differences in behaviour exist between the sexes of most animal species and are associated with many sex-specific specializations. The visual system of the male housefly is known to be specialized for pursuit behaviour that culminates in mating. Males chase females using a high-acuity region of the fronto-dorsal retina (the 'love spot') that drives sex-specific neural circuitry. We show that love spot photoreceptors of the housefly combine better spatial resolution with a faster electrical response, thereby allowing them to code higher velocities and smaller targets than female photoreceptors. Love spot photoreceptors of males are more than 60% faster than their female counterparts and are among the fastest recorded for any animal. The superior response dynamics of male photoreceptors is achieved by a speeding up of the biochemical processes involved in phototransduction and by a tuned voltage-activated conductance that boosts the membrane frequency response. These results demonstrate that the inherent plasticity of phototransduction facilitates the tuning of the dynamics of visual processing to the requirements of visual ecology.

Full Text

The Full Text of this article is available as a PDF (344.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. C., Laughlin S. B. Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. Vision Res. 2000;40(1):13–31. doi: 10.1016/s0042-6989(99)00171-6. [DOI] [PubMed] [Google Scholar]
  2. Coles J. A., Schneider-Picard G. Amplification of small signals by voltage-gated sodium channels in drone photoreceptors. J Comp Physiol A. 1989 Apr;165(1):109–118. doi: 10.1007/BF00613804. [DOI] [PubMed] [Google Scholar]
  3. Howard J., Blakeslee B., Laughlin S. B. The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415–435. doi: 10.1098/rspb.1987.0053. [DOI] [PubMed] [Google Scholar]
  4. Laughlin S. B. Matched filtering by a photoreceptor membrane. Vision Res. 1996 Jun;36(11):1529–1541. doi: 10.1016/0042-6989(95)00242-1. [DOI] [PubMed] [Google Scholar]
  5. Laughlin S. B., de Ruyter van Steveninck R. R., Anderson J. C. The metabolic cost of neural information. Nat Neurosci. 1998 May;1(1):36–41. doi: 10.1038/236. [DOI] [PubMed] [Google Scholar]
  6. Laughlin S. A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C. 1981 Sep-Oct;36(9-10):910–912. [PubMed] [Google Scholar]
  7. O'Carroll D. C., Laughlin S. B., Bidwell N. J., Harris R. A. Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects. Vision Res. 1997 Dec;37(23):3427–3439. doi: 10.1016/s0042-6989(97)00170-3. [DOI] [PubMed] [Google Scholar]
  8. Ranganathan R., Malicki D. M., Zuker C. S. Signal transduction in Drosophila photoreceptors. Annu Rev Neurosci. 1995;18:283–317. doi: 10.1146/annurev.ne.18.030195.001435. [DOI] [PubMed] [Google Scholar]
  9. Stavenga D. G. Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci. 1992 Jun;15(6):213–218. doi: 10.1016/0166-2236(92)90038-a. [DOI] [PubMed] [Google Scholar]
  10. Vallet A. M., Coles J. A., Eilbeck J. C., Scott A. C. Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee. J Physiol. 1992 Oct;456:303–324. doi: 10.1113/jphysiol.1992.sp019338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weckström M., Hardie R. C., Laughlin S. B. Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J Physiol. 1991;440:635–657. doi: 10.1113/jphysiol.1991.sp018729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weckström M., Kouvalainen E., Juusola M. Measurement of cell impedance in frequency domain using discontinuous current clamp and white-noise-modulated current injection. Pflugers Arch. 1992 Aug;421(5):469–472. doi: 10.1007/BF00370258. [DOI] [PubMed] [Google Scholar]
  13. de Souza J. M., Ventura D. F. Comparative study of temporal summation and response form in hymenopteran photoreceptors. J Comp Physiol A. 1989;165(2):237–245. doi: 10.1007/BF00619198. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES