Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Nov 7;267(1458):2199–2205. doi: 10.1098/rspb.2000.1269

Tracking colonization and diversification of insect lineages on islands: mitochondrial DNA phylogeography of Tarphius canariensis (Coleoptera: Colydiidae) on the Canary Islands.

B C Emerson 1, P Oromí 1, G M Hewitt 1
PMCID: PMC1690798  PMID: 11413633

Abstract

The genus Tarphius Erichson (Coleoptera: Colydiidae) is represented by 29 species on the Canary Islands. The majority are rare, single-island endemics intimately associated with the monteverde (laurel forest and fayal-brezal). The Tarphius canariensis complex is by far the most abundant and geographically wide-spread, occurring on Gran Canaria, Tenerife and La Palma. Eighty-seven individuals from the T. canariensis complex were sequenced for 444 bp of the mitochondrial DNA cytochrome oxidase I gene (COI), 597 bp of the COII gene and the intervening tRNA(leu) gene. A neighbour-joining analysis of maximum-likelihood distances put La Palma as a single monophyletic clade of haplotypes occurring within a larger clade comprising all Tenerife haplotypes. Gran Canarian haplotypes were also monophyletic occurring on a separate lineage. Using a combination of the phylogeographic pattern for T. canariensis, geological data, biogeography of the remaining species and estimated divergence times, we proposed a Tenerifean origin in the old Teno massif and independent colonizations from here to north-eastern Tenerife (Anaga), Gran Canaria and La Palma. New methods of estimating diversification rates using branching times were applied to each island fauna. All islands exhibited a gradually decreasing rate of genetic diversification similar to that seen for Brachyderes rugatus (Coleoptera: Curculionidae) from the Canary Islands.

Full Text

The Full Text of this article is available as a PDF (370.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brower A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491–6495. doi: 10.1073/pnas.91.14.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeSalle R., Freedman T., Prager E. M., Wilson A. C. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol. 1987;26(1-2):157–164. doi: 10.1007/BF02111289. [DOI] [PubMed] [Google Scholar]
  3. Emerson B. C., Oromí P., Hewitt G. M. Colonization and diversification of the species Brachyderes rugatus (Coleoptera) on the Canary Islands: evidence from mitochondrial DNA COII gene sequences. Evolution. 2000 Jun;54(3):911–923. doi: 10.1111/j.0014-3820.2000.tb00091.x. [DOI] [PubMed] [Google Scholar]
  4. Emerson B. C., Oromí P., Hewitt G. M. MtDNA phylogeography and recent intra-island diversification among Canary Island Calathus beetles. Mol Phylogenet Evol. 1999 Oct;13(1):149–158. doi: 10.1006/mpev.1999.0644. [DOI] [PubMed] [Google Scholar]
  5. Juan C., Ibrahim K. M., Oromi P., Hewitt G. M. Mitochondrial DNA sequence variation and phylogeography of Pimelia darkling beetles on the island of Tenerife (Canary Islands). Heredity (Edinb) 1996 Dec;77(Pt 6):589–598. doi: 10.1038/hdy.1996.186. [DOI] [PubMed] [Google Scholar]
  6. Juan C., Ibrahim K. M., Oromí P., Hewitt G. M. The phylogeography of the darkling beetle, Hegeter politus, in the eastern Canary Islands. Proc Biol Sci. 1998 Jan 22;265(1391):135–140. doi: 10.1098/rspb.1998.0274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Juan C., Oromi P., Hewitt G. M. Mitochondrial DNA phylogeny and sequential colonization of Canary Islands by darkling beetles of the genus Pimelia (Tenebrionidae). Proc Biol Sci. 1995 Aug 22;261(1361):173–180. doi: 10.1098/rspb.1995.0133. [DOI] [PubMed] [Google Scholar]
  8. Juan C., Oromi P., Hewitt G. M. Phylogeny of the genus Hegeter (Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from Cytochrome Oxidase I mitochondrial DNA sequences. Heredity (Edinb) 1996 Apr;76(Pt 4):392–403. doi: 10.1038/hdy.1996.57. [DOI] [PubMed] [Google Scholar]
  9. Juan I, I, Emerson BC, Orom I, I, Hewitt GM. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol. 2000 Mar;15(3):104–109. doi: 10.1016/s0169-5347(99)01776-0. [DOI] [PubMed] [Google Scholar]
  10. doi: 10.1098/rspb.1997.0158. [DOI] [PMC free article] [Google Scholar]
  11. Piano F., Craddock E. M., Kambysellis M. P. Phylogeny of the island populations of the Hawaiian Drosophila grimshawi complex: evidence from combined data. Mol Phylogenet Evol. 1997 Apr;7(2):173–184. doi: 10.1006/mpev.1996.0387. [DOI] [PubMed] [Google Scholar]
  12. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  13. Roderick G. K., Gillespie R. G. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol Ecol. 1998 Apr;7(4):519–531. doi: 10.1046/j.1365-294x.1998.00309.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES