Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Nov 22;267(1459):2345–2350. doi: 10.1098/rspb.2000.1290

Species concepts and malaria parasites: detecting a cryptic species of Plasmodium.

S L Perkins 1
PMCID: PMC1690816  PMID: 11413654

Abstract

Species of malaria parasite (phylum Apicomplexa: genus Plasmodium) have traditionally been described using the similarity species concept (based primarily on differences in morphological or life-history characteristics). The biological species concept (reproductive isolation) and phylogenetic species concept (based on monophyly) have not been used before in defining species of Plasmodium. Plasmodium azurophilum, described from Anolis lizards in the eastern Caribbean, is actually a two-species cryptic complex. The parasites were studied from eight islands, from Puerto Rico in the north to Grenada in the south. Morphology of the two species is very similar (differences are indistinguishable to the eye), but one infects only erythrocytes and the other only white blood cells. Molecular data for the cytochrome b gene reveal that the two forms are reproductively isolated; distinct haplotypes are present on each island and are never shared between the erythrocyte-infecting and leucocyte-infecting species. Each forms a monophyletic lineage indicating that they diverged before becoming established in the anoles of the eastern Caribbean. This comparison of the similarity, biological and phylogenetic species concepts for malaria parasites reveals the limited value of using only similarity measures in defining protozoan species.

Full Text

The Full Text of this article is available as a PDF (250.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala S. C., Hertz P. E. Malaria infection in Anolis lizards on Martinique, Lesser Antilles. Rev Inst Med Trop Sao Paulo. 1981 Jan-Feb;23(1):12–17. [PubMed] [Google Scholar]
  2. Ayala S. C. Lizard malaria in California; description of a strain of Plasmodium mexicanum, and biogeography of lizard malaria in western North America. J Parasitol. 1970 Jun;56(3):417–425. [PubMed] [Google Scholar]
  3. Baker A. J., Daugherty C. H., Colbourne R., McLennan J. L. Flightless brown kiwis of New Zealand possess extremely subdivided population structure and cryptic species like small mammals. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8254–8258. doi: 10.1073/pnas.92.18.8254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckling A. G., Taylor L. H., Carlton J. M., Read A. F. Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy. Proc Biol Sci. 1997 Apr 22;264(1381):553–559. doi: 10.1098/rspb.1997.0079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter R., Nijhout M. M. Control of gamete formation (exflagellation) in malaria parasites. Science. 1977 Jan 28;195(4276):407–409. doi: 10.1126/science.12566. [DOI] [PubMed] [Google Scholar]
  6. Creasey A. M., Ranford-Cartwright L. C., Moore D. J., Williamson D. H., Wilson R. J., Walliker D., Carter R. Uniparental inheritance of the mitochondrial gene cytochrome b in Plasmodium falciparum. Curr Genet. 1993;23(4):360–364. doi: 10.1007/BF00310900. [DOI] [PubMed] [Google Scholar]
  7. Dye C. Population genetics of nonclonal, nonrandomly mating malaria parasites. Parasitol Today. 1991 Sep;7(9):236–240. doi: 10.1016/0169-4758(91)90236-h. [DOI] [PubMed] [Google Scholar]
  8. Eisen R. J., Schall J. J. Life history of a malaria parasite (Plasmodium mexicanum): independent traits and basis for variation. Proc Biol Sci. 2000 Apr 22;267(1445):793–799. doi: 10.1098/rspb.2000.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Escalante A. A., Barrio E., Ayala F. J. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol. 1995 Jul;12(4):616–626. doi: 10.1093/oxfordjournals.molbev.a040241. [DOI] [PubMed] [Google Scholar]
  10. Escalante A. A., Freeland D. E., Collins W. E., Lal A. A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8124–8129. doi: 10.1073/pnas.95.14.8124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hung G. C., Chilton N. B., Beveridge I., Zhu X. Q., Lichtenfels J. R., Gasser R. B. Molecular evidence for cryptic species within Cylicostephanus minutus (Nematoda: Strongylidae). Int J Parasitol. 1999 Feb;29(2):285–291. doi: 10.1016/s0020-7519(98)00203-3. [DOI] [PubMed] [Google Scholar]
  12. Jordan H. B. The occurrence and development of Plasmodium mexicanum in the western fence lizard Sceloporus occidentalis. J Protozool. 1970 Feb;17(1):86–89. doi: 10.1111/j.1550-7408.1970.tb05162.x. [DOI] [PubMed] [Google Scholar]
  13. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  14. Lounibos L. P., Wilkerson R. C., Conn J. E., Hribar L. J., Fritz G. N., Danoff-Burg J. A. Morphological, molecular, and chromosomal discrimination of cryptic Anopheles (Nyssorhynchus) (Diptera: Culicidae) from South America. J Med Entomol. 1998 Sep;35(5):830–838. doi: 10.1093/jmedent/35.5.830. [DOI] [PubMed] [Google Scholar]
  15. Lymbery A. J., Thompson R. C. Species of Echinococcus: pattern and process. Parasitol Today. 1996 Dec;12(12):486–491. doi: 10.1016/s0169-4758(96)10071-5. [DOI] [PubMed] [Google Scholar]
  16. Paul R. E., Packer M. J., Walmsley M., Lagog M., Ranford-Cartwright L. C., Paru R., Day K. P. Mating patterns in malaria parasite populations of Papua New Guinea. Science. 1995 Sep 22;269(5231):1709–1711. doi: 10.1126/science.7569897. [DOI] [PubMed] [Google Scholar]
  17. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  18. Purnomo, Solihin A., Gomez-Saladin E., Bangs M. J. Rare quadruple malaria infection in Irian Jaya Indonesia. J Parasitol. 1999 Jun;85(3):574–579. [PubMed] [Google Scholar]
  19. Qari S. H., Shi Y. P., Goldman I. F., Udhayakumar V., Alpers M. P., Collins W. E., Lal A. A. Identification of Plasmodium vivax-like human malaria parasite. Lancet. 1993 Mar 27;341(8848):780–783. doi: 10.1016/0140-6736(93)90559-y. [DOI] [PubMed] [Google Scholar]
  20. Richie T. L. Interactions between malaria parasites infecting the same vertebrate host. Parasitology. 1988 Jun;96(Pt 3):607–639. doi: 10.1017/s0031182000080227. [DOI] [PubMed] [Google Scholar]
  21. Staats C. M., Schall J. J. Distribution and abundance of two malarial parasites of the endemic Anolis lizard of Saba Island, Netherlands Antilles. J Parasitol. 1996 Jun;82(3):409–413. [PubMed] [Google Scholar]
  22. Sturmbauer C., Opadiya G. B., Niederstätter H., Riedmann A., Dallinger R. Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol. 1999 Jul;16(7):967–974. doi: 10.1093/oxfordjournals.molbev.a026186. [DOI] [PubMed] [Google Scholar]
  23. Tajima F., Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984 Apr;1(3):269–285. doi: 10.1093/oxfordjournals.molbev.a040317. [DOI] [PubMed] [Google Scholar]
  24. Tibayrenc M., Ayala F. J. Towards a population genetics of microorganisms: The clonal theory of parasitic protozoa. Parasitol Today. 1991 Sep;7(9):228–232. doi: 10.1016/0169-4758(91)90234-f. [DOI] [PubMed] [Google Scholar]
  25. Walliker D. Malaria parasites: Randomly interbreeding or 'clonal' populations? Parasitol Today. 1991 Sep;7(9):232–235. doi: 10.1016/0169-4758(91)90235-g. [DOI] [PubMed] [Google Scholar]
  26. Walliker D. The genetic basis of diversity in malaria parasites. Adv Parasitol. 1983;22:217–259. doi: 10.1016/s0065-308x(08)60463-7. [DOI] [PubMed] [Google Scholar]
  27. White G. B. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68(4):278–301. doi: 10.1016/0035-9203(74)90035-2. [DOI] [PubMed] [Google Scholar]
  28. de Meeûs T., Michalakis Y., Renaud F. Santa rosalia revisited: or why are there so many kinds of parasites in ;the garden of earthly delights'? Parasitol Today. 1998 Jan;14(1):10–13. doi: 10.1016/s0169-4758(97)01163-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES