Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Dec 7;267(1460):2375–2384. doi: 10.1098/rspb.2000.1294

Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus.

E B Taylor 1, J D McPhail 1
PMCID: PMC1690834  PMID: 11133026

Abstract

Historical contingency and determinism are often cast as opposing paradigms under which evolutionary diversification operates. It may be, however, that both factors act together to promote evolutionary divergence, although there are few examples of such interaction in nature. We tested phylogenetic predictions of an explicit historical model of divergence (double invasions of freshwater by marine ancestors) in sympatric species of three-spined sticklebacks (Gasterosteus aculeatus) where determinism has been implicated as an important factor driving evolutionary novelty. Microsatellite DNA variation at six loci revealed relatively low genetic variation in freshwater populations, supporting the hypothesis that they were derived by colonization of freshwater by more diverse marine ancestors. Phylogenetic and genetic distance analyses suggested that pairs of sympatric species have evolved multiple times, further implicating determinism as a factor in speciation. Our data also supported predictions based on the hypothesis that the evolution of sympatric species was contingent upon 'double invasions' of postglacial lakes by ancestral marine sticklebacks. Sympatric sticklebacks, therefore, provide an example of adaptive radiation by determinism contingent upon historical conditions promoting unique ecological interactions, and illustrate how contingency and determinism may interact to generate geographical variation in species diversity

Full Text

The Full Text of this article is available as a PDF (583.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  2. Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
  3. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gaggiotti O. E., Lange O., Rassmann K., Gliddon C. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol. 1999 Sep;8(9):1513–1520. doi: 10.1046/j.1365-294x.1999.00730.x. [DOI] [PubMed] [Google Scholar]
  5. Goldstein D. B., Pollock D. D. Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. J Hered. 1997 Sep-Oct;88(5):335–342. doi: 10.1093/oxfordjournals.jhered.a023114. [DOI] [PubMed] [Google Scholar]
  6. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol Biol Evol. 1998 Feb;15(2):104–118. doi: 10.1093/oxfordjournals.molbev.a025907. [DOI] [PubMed] [Google Scholar]
  8. Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
  9. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  10. Losos JB, Jackman TR, Larson A, Queiroz K, Rodriguez-Schettino L. Contingency and determinism in replicated adaptive radiations of island lizards . Science. 1998 Mar 27;279(5359):2115–2118. doi: 10.1126/science.279.5359.2115. [DOI] [PubMed] [Google Scholar]
  11. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paetkau D., Calvert W., Stirling I., Strobeck C. Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol. 1995 Jun;4(3):347–354. doi: 10.1111/j.1365-294x.1995.tb00227.x. [DOI] [PubMed] [Google Scholar]
  13. Paetkau D., Waits L. P., Clarkson P. L., Craighead L., Strobeck C. An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics. 1997 Dec;147(4):1943–1957. doi: 10.1093/genetics/147.4.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reynolds J., Weir B. S., Cockerham C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983 Nov;105(3):767–779. doi: 10.1093/genetics/105.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rico C., Zadworny D., Kuhnlein U., Fitzgerald G. J. Characterization of hypervariable microsatellite loci in the threespine stickleback Gasterosteus aculeatus. Mol Ecol. 1993 Aug;2(4):271–272. doi: 10.1111/j.1365-294x.1993.tb00017.x. [DOI] [PubMed] [Google Scholar]
  16. Rundle H. D., Nagel L., Wenrick Boughman J., Schluter D. Natural selection and parallel speciation in sympatric sticklebacks. Science. 2000 Jan 14;287(5451):306–308. doi: 10.1126/science.287.5451.306. [DOI] [PubMed] [Google Scholar]
  17. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  18. Schluter D. Experimental evidence that competition promotes divergence in adaptive radiation. Science. 1994 Nov 4;266(5186):798–801. doi: 10.1126/science.266.5186.798. [DOI] [PubMed] [Google Scholar]
  19. Takezaki N., Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996 Sep;144(1):389–399. doi: 10.1093/genetics/144.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Travisano M., Mongold J. A., Bennett A. F., Lenski R. E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science. 1995 Jan 6;267(5194):87–90. doi: 10.1126/science.7809610. [DOI] [PubMed] [Google Scholar]
  21. Wang R. L., Wakeley J., Hey J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics. 1997 Nov;147(3):1091–1106. doi: 10.1093/genetics/147.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES