Abstract
Freshwater snails of the genus Biomphalaria, Preston 1910, are the most important and widely distributed intermediate hosts of Schistosoma mansoni, the blood fluke responsible for human intestinal schistosomiasis, in Africa and the Neotropics. S. mansoni is thought to have been imported repeatedly into the Americas during the last 500 years with the African slave trade. Surprisingly considering that the New and Old World separated 95-106 million years (Myr) ago, the disease rapidly became established due to the presence of endemic susceptible hosts. Reconstructing the phylogenetic relationships within Biomphalaria may provide insights into the successful intercontinental spread of S. mansoni. Parsimony and distance analyses of mitochondrial and nuclear sequences show African taxa to be monophyletic and Neotropical species paraphyletic, with Biomphalaria glabrata forming a separate clade from other Neotropical Biomphalaria, and ancestral to the African taxa. A west to east trans-Atlantic dispersal of a B. glabrata-like taxon, possibly as recently as the Plio-Pleistocene (1.8-3.6 Myr ago) according to a general mitochondrial clock, would fit these observations. Vicariance or an African origin for B. glabrata followed by multiple introductions to South America over the past 500 years with the African slave trade seem unlikely explanations. Knowledge of the phylogenetic relationships among important intermediate host species may prove useful in furthering control measures which exploit genetic differences in susceptibility to parasites, and in elucidating the evolution of schistosome resistance.
Full Text
The Full Text of this article is available as a PDF (509.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Despres L., Imbert-Establet D., Combes C., Bonhomme F. Molecular evidence linking hominid evolution to recent radiation of schistosomes (Platyhelminthes: Trematoda). Mol Phylogenet Evol. 1992 Dec;1(4):295–304. doi: 10.1016/1055-7903(92)90005-2. [DOI] [PubMed] [Google Scholar]
- Desprès L., Imbert-Establet D., Monnerot M. Molecular characterization of mitochondrial DNA provides evidence for the recent introduction of Schistosoma mansoni into America. Mol Biochem Parasitol. 1993 Aug;60(2):221–229. doi: 10.1016/0166-6851(93)90133-i. [DOI] [PubMed] [Google Scholar]
- FILES V. S. A study of the vector-parasite relationships in Schistosoma mansoni. Parasitology. 1951 Dec;41(3-4):264–269. doi: 10.1017/s0031182000084092. [DOI] [PubMed] [Google Scholar]
- Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
- Fletcher M., LoVerde P. T., Woodruff D. S. Genetic variation in Schistosoma mansoni: enzyme polymorphisms in populations from Africa, Southwest Asia, South America, and the West Indies. Am J Trop Med Hyg. 1981 Mar;30(2):406–421. doi: 10.4269/ajtmh.1981.30.406. [DOI] [PubMed] [Google Scholar]
- Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294–299. [PubMed] [Google Scholar]
- Frandsen F. Studies of the relationship between Schistosoma and their intermediate hosts. III. The genus Biomphalaria and Schistosoma mansoni from Egypt, Kenya, Sudan, Uganda, West Indies (St. Lucia) and Zaire (two different strains: Katanga and Kinshasa). J Helminthol. 1979 Dec;53(4):321–348. doi: 10.1017/s0022149x00006179. [DOI] [PubMed] [Google Scholar]
- Gryseels B. Schistosomiasis vaccines: a devils' advocate view. Parasitol Today. 2000 Feb;16(2):46–48. doi: 10.1016/s0169-4758(99)01597-5. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
- Hoeh W. R., Stewart D. T., Sutherland B. W., Zouros E. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia) Mol Biol Evol. 1996 Feb;13(2):418–421. doi: 10.1093/oxfordjournals.molbev.a025600. [DOI] [PubMed] [Google Scholar]
- Jones C. S., Lockyer A. E., Rollinson D., Piertney S. B., Noble L. R. Isolation and characterization of microsatellite loci in the freshwater gastropod, Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Mol Ecol. 1999 Dec;8(12):2149–2151. doi: 10.1046/j.1365-294x.1999.00802-5.x. [DOI] [PubMed] [Google Scholar]
- Kane R. A., Rollinson D. Repetitive sequences in the ribosomal DNA internal transcribed spacer of Schistosoma haematobium, Schistosoma intercalatum and Schistosoma mattheei. Mol Biochem Parasitol. 1994 Jan;63(1):153–156. doi: 10.1016/0166-6851(94)90018-3. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Lardans V., Dissous C. Snail control strategies for reduction of schistosomiasis transmission. Parasitol Today. 1998 Oct;14(10):413–417. doi: 10.1016/s0169-4758(98)01320-9. [DOI] [PubMed] [Google Scholar]
- Stothard J. R., Hughes S., Rollinson D. Variation within the internal transcribed spacer (ITS) of ribosomal DNA genes of intermediate snail hosts within the genus Bulinus (Gastropoda: Planorbidae). Acta Trop. 1996 Mar;61(1):19–29. doi: 10.1016/0001-706x(95)00137-4. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidigal T. H., Dias Neto E., Carvalho O. dos S., Simpson A. J. Biomphalaria glabrata: extensive genetic variation in Brazilian isolates revealed by random amplified polymorphic DNA analysis. Exp Parasitol. 1994 Sep;79(2):187–194. doi: 10.1006/expr.1994.1078. [DOI] [PubMed] [Google Scholar]
- Vidigal T. H., Dias Neto E., Spatz L., Nunes D. N., Pires E. R., Simpson A. J., Carvalho O. S. Genetic variability and identification of the intermediate snail hosts of Schistosoma mansoni. Mem Inst Oswaldo Cruz. 1998;93 (Suppl 1):103–110. doi: 10.1590/s0074-02761998000700014. [DOI] [PubMed] [Google Scholar]
- Yousif F., Haroun N., Ibrahim A., El-Bardicy S. Biomphalaria glabrata: a new threat for schistosomiasis transmission in Egypt. J Egypt Soc Parasitol. 1996 Apr;26(1):191–205. [PubMed] [Google Scholar]