Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Dec 22;267(1461):2517–2521. doi: 10.1098/rspb.2000.1314

Intraspecific phylogenetic congruence among multiple symbiont genomes.

D J Funk 1, L Helbling 1, J J Wernegreen 1, N A Moran 1
PMCID: PMC1690841  PMID: 11197128

Abstract

Eukaryotes often form intimate endosymbioses with prokaryotic organisms. Cases in which these symbionts are transmitted cytoplasmically to host progeny create the potential for co-speciation or congruent evolution among the distinct genomes of these partners. If symbionts do not move horizontally between different eukaryotic hosts, strict phylogenetic congruence of their genomes is predicted and should extend to relationships within a single host species. Conversely, even rare 'host shifts' among closely related lineages should yield conflicting tree topologies at the intraspecific level. Here, we investigate the historical associations among four symbiotic genomes residing within an aphid host: the mitochondrial DNA of Uroleucon ambrosiae aphids, the bacterial chromosome of their Buchnera bacterial endosymbionts, and two plasmids associated with Buchnera. DNA sequence polymorphisms provided a significant phylogenetic signal and no homoplasy for each data set, yielding completely and significantly congruent phylogenies for these four genomes and no evidence of horizontal transmission. This study thus provides the first evidence for strictly vertical transmission and 'co-speciation' of symbiotic organisms at the intraspecific level, and represents the lowest phylogenetic level at which such coevolution has been demonstrated. These results may reflect the obligate nature of this intimate mutualism and indicate opportunities for adaptive coevolution among linked symbiont genomes.

Full Text

The Full Text of this article is available as a PDF (204.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann L., Baumann P., Moran N. A., Sandström J., Thao M. L. Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts (Buchnera) of aphids. J Mol Evol. 1999 Jan;48(1):77–85. doi: 10.1007/pl00006447. [DOI] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  3. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  4. Bouma J. E., Lenski R. E. Evolution of a bacteria/plasmid association. Nature. 1988 Sep 22;335(6188):351–352. doi: 10.1038/335351a0. [DOI] [PubMed] [Google Scholar]
  5. Bracho A. M., Martínez-Torres D., Moya A., Latorre A. Discovery and molecular characterization of a plasmid localized in Buchnera sp. bacterial endosymbiont of the aphid Rhopalosiphum padi. J Mol Evol. 1995 Jul;41(1):67–73. doi: 10.1007/BF00174042. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen D. Q., Purcell A. H. Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol. 1997 Apr;34(4):220–225. doi: 10.1007/s002849900172. [DOI] [PubMed] [Google Scholar]
  8. Chen X., Li S., Aksoy S. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol. 1999 Jan;48(1):49–58. doi: 10.1007/pl00006444. [DOI] [PubMed] [Google Scholar]
  9. Clark M. A., Moran N. A., Baumann P. Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol. 1999 Nov;16(11):1586–1598. doi: 10.1093/oxfordjournals.molbev.a026071. [DOI] [PubMed] [Google Scholar]
  10. Clark M. A., Moran N. A., Baumann P., Wernegreen J. J. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution. 2000 Apr;54(2):517–525. doi: 10.1111/j.0014-3820.2000.tb00054.x. [DOI] [PubMed] [Google Scholar]
  11. Davies J., Smith D. I. Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol. 1978;32:469–518. doi: 10.1146/annurev.mi.32.100178.002345. [DOI] [PubMed] [Google Scholar]
  12. Douglas A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37. doi: 10.1146/annurev.ento.43.1.17. [DOI] [PubMed] [Google Scholar]
  13. Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
  14. Hillis D. M., Huelsenbeck J. P. Signal, noise, and reliability in molecular phylogenetic analyses. J Hered. 1992 May-Jun;83(3):189–195. doi: 10.1093/oxfordjournals.jhered.a111190. [DOI] [PubMed] [Google Scholar]
  15. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  17. Lai C. Y., Baumann L., Baumann P. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3819–3823. doi: 10.1073/pnas.91.9.3819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maynard Smith J., Smith N. H. Detecting recombination from gene trees. Mol Biol Evol. 1998 May;15(5):590–599. doi: 10.1093/oxfordjournals.molbev.a025960. [DOI] [PubMed] [Google Scholar]
  19. Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants . Science. 1998 Sep 25;281(5385):2034–2038. doi: 10.1126/science.281.5385.2034. [DOI] [PubMed] [Google Scholar]
  20. Nishiguchi M. K., Ruby E. G., McFall-Ngai M. J. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-vibrio symbioses. Appl Environ Microbiol. 1998 Sep;64(9):3209–3213. doi: 10.1128/aem.64.9.3209-3213.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peek A. S., Feldman R. A., Lutz R. A., Vrijenhoek R. C. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9962–9966. doi: 10.1073/pnas.95.17.9962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rouhbakhsh D., Clark M. A., Baumann L., Moran N. A., Baumann P. Evolution of the tryptophan biosynthetic pathway in Buchnera (aphid endosymbionts): studies of plasmid-associated trpEG within the genus Uroleucon. Mol Phylogenet Evol. 1997 Oct;8(2):167–176. doi: 10.1006/mpev.1997.0419. [DOI] [PubMed] [Google Scholar]
  23. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  24. Simon J. C., Martinez-Torres D., Latorre A., Moya A., Hebert P. D. Molecular characterization of cyclic and obligate parthenogens in the aphid Rhopalosiphum padi (L.). Proc Biol Sci. 1996 Apr 22;263(1369):481–486. doi: 10.1098/rspb.1996.0072. [DOI] [PubMed] [Google Scholar]
  25. Wernegreen J. J., Riley M. A. Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol. 1999 Jan;16(1):98–113. doi: 10.1093/oxfordjournals.molbev.a026041. [DOI] [PubMed] [Google Scholar]
  26. Werren J. H. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES