Abstract
Using a weak migration and weak mutation approximation, I studied the average waiting time to parapatric speciation. The description of reproductive isolation used is based on the classical Dobzhansky model and its recently proposed multilocus generalizations. The dynamics of parapatric speciation are modelled as a biased random walk performed by the average genetic distance between the residents and immigrants. If a small number of genetic changes is sufficient for complete reproductive isolation, mutation and random genetic drift alone can cause speciation on the time-scale of ten to 1,000 times the inverse of the mutation rate over a set of loci underlying reproductive isolation. Even relatively weak selection for local adaptation can dramatically decrease the waiting time to speciation. The actual duration of the parapatric speciation process (that is the duration of intermediate forms in the actual transition to a state of complete reproductive isolation) is shorter by orders of magnitude than the overall waiting time to speciation. For a wide range of parameter values, the actual duration of parapatric speciation is of the order of one over the mutation rate. In general, parapatric speciation is expected to be triggered by changes in the environment.
Full Text
The Full Text of this article is available as a PDF (417.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coyne J. A., Orr H. A. The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):287–305. doi: 10.1098/rstb.1998.0210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieckmann U., Doebeli M. On the origin of species by sympatric speciation. Nature. 1999 Jul 22;400(6742):354–357. doi: 10.1038/22521. [DOI] [PubMed] [Google Scholar]
- Friesen V. L., Anderson D. J. Phylogeny and evolution of the Sulidae (Aves:Pelecaniformes): a test of alternative modes of speciation. Mol Phylogenet Evol. 1997 Apr;7(2):252–260. doi: 10.1006/mpev.1996.0397. [DOI] [PubMed] [Google Scholar]
- Gavrilets S., Acton R., Gravner J. Dynamics of speciation and diversification in a metapopulation. Evolution. 2000 Oct;54(5):1493–1501. doi: 10.1111/j.0014-3820.2000.tb00695.x. [DOI] [PubMed] [Google Scholar]
- Gavrilets S., Gravner J. Percolation on the fitness hypercube and the evolution of reproductive isolation. J Theor Biol. 1997 Jan 7;184(1):51–64. doi: 10.1006/jtbi.1996.0242. [DOI] [PubMed] [Google Scholar]
- Gavrilets S., Li H., Vose M. D. Patterns of parapatric speciation. Evolution. 2000 Aug;54(4):1126–1134. doi: 10.1111/j.0014-3820.2000.tb00548.x. [DOI] [PubMed] [Google Scholar]
- Gavrilets S., Li H., Vose M. D. Rapid parapatric speciation on holey adaptive landscapes. Proc Biol Sci. 1998 Aug 22;265(1405):1483–1489. doi: 10.1098/rspb.1998.0461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgs P. G., Derrida B. Genetic distance and species formation in evolving populations. J Mol Evol. 1992 Nov;35(5):454–465. doi: 10.1007/BF00171824. [DOI] [PubMed] [Google Scholar]
- Johnson K. P., Adler F. R., Cherry J. L. Genetic and phylogenetic consequences of island biogeography. Evolution. 2000 Apr;54(2):387–396. doi: 10.1111/j.0014-3820.2000.tb00041.x. [DOI] [PubMed] [Google Scholar]
- Johnson N. A., Porter A. H. Rapid speciation via parallel, directional selection on regulatory genetic pathways. J Theor Biol. 2000 Aug 21;205(4):527–542. doi: 10.1006/jtbi.2000.2070. [DOI] [PubMed] [Google Scholar]
- Lande R. Expected time for random genetic drift of a population between stable phenotypic states. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7641–7645. doi: 10.1073/pnas.82.22.7641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lande R. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity (Edinb) 1985 Jun;54(Pt 3):323–332. doi: 10.1038/hdy.1985.43. [DOI] [PubMed] [Google Scholar]
- Nei M., Maruyama T., Wu C. I. Models of evolution of reproductive isolation. Genetics. 1983 Mar;103(3):557–579. doi: 10.1093/genetics/103.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995 Apr;139(4):1805–1813. doi: 10.1093/genetics/139.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1998.0520. [DOI] [PMC free article] [Google Scholar]
- Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987 May 15;236(4803):787–792. doi: 10.1126/science.3576198. [DOI] [PubMed] [Google Scholar]
- Tachida H., Iizuka M. Fixation probability in spatially changing environments. Genet Res. 1991 Dec;58(3):243–251. doi: 10.1017/s0016672300029992. [DOI] [PubMed] [Google Scholar]
- Vacquier V. D. Evolution of gamete recognition proteins. Science. 1998 Sep 25;281(5385):1995–1998. doi: 10.1126/science.281.5385.1995. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Palopoli M. F. Genetics of postmating reproductive isolation in animals. Annu Rev Genet. 1994;28:283–308. doi: 10.1146/annurev.ge.28.120194.001435. [DOI] [PubMed] [Google Scholar]