Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Dec 22;267(1461):2493–2500. doi: 10.1098/rspb.2000.1310

Molecular and morphological evidence on the phylogeny of the Elephantidae.

M G Thomas 1, E Hagelberg 1, H B Jone 1, Z Yang 1, A M Lister 1
PMCID: PMC1690853  PMID: 11197124

Abstract

The African and Asian elephants and the mammoth diverged ca. 4-6 million years ago and their phylogenetic relationship has been controversial. Morphological studies have suggested a mammoth Asian elephant relationship, while molecular studies have produced conflicting results. We obtained cytochrome b sequences of up to 545 base pairs from five mammoths, 14 Asian and eight African elephants. A high degree of polymorphism is detected within species. With a dugong sequence used as the outgroup, parsimony and maximum-likelihood analyses support a mammoth African elephant clade. As the dugong is a very distant outgroup, we employ likelihood analysis to root the tree with a molecular clock, and use bootstrap and Bayesian analyses to quantify the relative support for different topologies. The analyses support the mammoth African elephant relationship, although other trees cannot be rejected. Ancestral polymorphisms may have resulted in gene trees differing from the species phylogeny Examination of morphological data, especially from primitive fossil members, indicates that some supposed synapomorphies between the mammoth and Asian elephant are variable, others convergent or autapomorphous. A mammoth African elephant relationship is not excluded. Our results highlight the need, in both morphological and molecular phylogenetics, for multiple markers and close attention to within-taxon variation and outgroup selection.

Full Text

The Full Text of this article is available as a PDF (291.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Barriel V., Thuet E., Tassy P. Molecular phylogeny of Elephantidae. Extreme divergence of the extant forest African elephant. C R Acad Sci III. 1999 Jun;322(6):447–454. doi: 10.1016/s0764-4469(99)80093-6. [DOI] [PubMed] [Google Scholar]
  3. Fernando P., Pfrender M. E., Encalada S. E., Lande R. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity (Edinb) 2000 Mar;84(Pt 3):362–372. doi: 10.1046/j.1365-2540.2000.00674.x. [DOI] [PubMed] [Google Scholar]
  4. Georgiadis N., Bischof L., Templeton A., Patton J., Karesh W., Western D. Structure and history of African elephant populations: I. Eastern and southern Africa. J Hered. 1994 Mar-Apr;85(2):100–104. doi: 10.1093/oxfordjournals.jhered.a111405. [DOI] [PubMed] [Google Scholar]
  5. Greenwood A. D., Capelli C., Possnert G., Päbo S. Nuclear DNA sequences from late Pleistocene megafauna. Mol Biol Evol. 1999 Nov;16(11):1466–1473. doi: 10.1093/oxfordjournals.molbev.a026058. [DOI] [PubMed] [Google Scholar]
  6. Hagelberg E., Clegg J. B. Isolation and characterization of DNA from archaeological bone. Proc Biol Sci. 1991 Apr 22;244(1309):45–50. doi: 10.1098/rspb.1991.0049. [DOI] [PubMed] [Google Scholar]
  7. Hagelberg E., Thomas M. G., Cook C. E., Jr, Sher A. V., Baryshnikov G. F., Lister A. M. DNA from ancient mammoth bones. Nature. 1994 Aug 4;370(6488):333–334. doi: 10.1038/370333b0. [DOI] [PubMed] [Google Scholar]
  8. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  9. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  10. Mahboubi M., Ameur R., Crochet J. Y., Jaeger J. J. Earliest known proboscidean from early Eocene of north-west Africa. Nature. 1984 Apr 5;308(5959):543–544. doi: 10.1038/308543a0. [DOI] [PubMed] [Google Scholar]
  11. Noro M., Masuda R., Dubrovo I. A., Yoshida M. C., Kato M. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J Mol Evol. 1998 Mar;46(3):314–326. doi: 10.1007/pl00006308. [DOI] [PubMed] [Google Scholar]
  12. Novacek M. J. Mammalian phylogeny: shaking the tree. Nature. 1992 Mar 12;356(6365):121–125. doi: 10.1038/356121a0. [DOI] [PubMed] [Google Scholar]
  13. Ozawa T., Hayashi S., Mikhelson V. M. Phylogenetic position of mammoth and Steller's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J Mol Evol. 1997 Apr;44(4):406–413. doi: 10.1007/pl00006160. [DOI] [PubMed] [Google Scholar]
  14. Thomas M. G., Cook C. E., Miller K. W., Waring M. J., Hagelberg E. Molecular instability in the COII-tRNA(Lys) intergenic region of the human mitochondrial genome: multiple origins of the 9-bp deletion and heteroplasmy for expanded repeats. Philos Trans R Soc Lond B Biol Sci. 1998 Jun 29;353(1371):955–965. doi: 10.1098/rstb.1998.0260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thomas M. G., Hesse S. A., Foss Y. J., Farzaneh F. The use of PCR for differential screening of cDNA libraries. Methods Mol Biol. 1997;67:405–418. doi: 10.1385/0-89603-483-6:405. [DOI] [PubMed] [Google Scholar]
  16. Yang H., Golenberg E. M., Shoshani J. Phylogenetic resolution within the Elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1190–1194. doi: 10.1073/pnas.93.3.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  18. Yang Z., Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol. 1997 Jul;14(7):717–724. doi: 10.1093/oxfordjournals.molbev.a025811. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES