Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Feb 7;269(1488):235–241. doi: 10.1098/rspb.2001.1877

A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens.

Per G P Ericson 1, Les Christidis 1, Alan Cooper 1, Martin Irestedt 1, Jennifer Jackson 1, Ulf S Johansson 1, Janette A Norman 1
PMCID: PMC1690883  PMID: 11839192

Abstract

Zoogeographic, palaeontological and biochemical data support a Southern Hemisphere origin for passerine birds, while accumulating molecular data suggest that most extant avian orders originated in the mid-Late Cretaceous. We obtained DNA sequence data from the nuclear c-myc and RAG-1 genes of the major passerine groups and here we demonstrate that the endemic New Zealand wrens (Acanthisittidae) are the sister taxon to all other extant passerines, supporting a Gondwanan origin and early radiation of passerines. We propose that (i) the acanthisittids were isolated when New Zealand separated from Gondwana (ca. 82-85 Myr ago), (ii) suboscines, in turn, were derived from an ancestral lineage that inhabited western Gondwana, and (iii) the ancestors of the oscines (songbirds) were subsequently isolated by the separation of Australia from Antarctica. The later spread of passerines into the Northern Hemisphere reflects the northward migration of these former Gondwanan elements.

Full Text

The Full Text of this article is available as a PDF (262.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton M. J. Early origins of modern birds and mammals: molecules vs. morphology. Bioessays. 1999 Dec;21(12):1043–1051. doi: 10.1002/(SICI)1521-1878(199912)22:1<1043::AID-BIES8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  2. Burns K. J. Molecular systematics of tanagers (Thraupinae): evolution and biogeography of a diverse radiation of neotropical birds. Mol Phylogenet Evol. 1997 Dec;8(3):334–348. doi: 10.1006/mpev.1997.0430. [DOI] [PubMed] [Google Scholar]
  3. Cooper A. Ancient DNA sequences reveal unsuspected phylogenetic relationships within New Zealand wrens (Acanthisittidae). Experientia. 1994 Jun 15;50(6):558–563. doi: 10.1007/BF01921725. [DOI] [PubMed] [Google Scholar]
  4. Cooper A., Cooper R. A. The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proc Biol Sci. 1995 Sep 22;261(1362):293–302. doi: 10.1098/rspb.1995.0150. [DOI] [PubMed] [Google Scholar]
  5. Cooper A., Lalueza-Fox C., Anderson S., Rambaut A., Austin J., Ward R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001 Feb 8;409(6821):704–707. doi: 10.1038/35055536. [DOI] [PubMed] [Google Scholar]
  6. Cooper A., Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997 Feb 21;275(5303):1109–1113. doi: 10.1126/science.275.5303.1109. [DOI] [PubMed] [Google Scholar]
  7. Cracraft J. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc Biol Sci. 2001 Mar 7;268(1466):459–469. doi: 10.1098/rspb.2000.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feduccia A. Explosive evolution in tertiary birds and mammals. Science. 1995 Feb 3;267(5198):637–638. doi: 10.1126/science.267.5198.637. [DOI] [PubMed] [Google Scholar]
  9. Groth J. G., Barrowclough G. F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999 Jul;12(2):115–123. doi: 10.1006/mpev.1998.0603. [DOI] [PubMed] [Google Scholar]
  10. Hedges S. B., Parker P. H., Sibley C. G., Kumar S. Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996 May 16;381(6579):226–229. doi: 10.1038/381226a0. [DOI] [PubMed] [Google Scholar]
  11. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  12. Lovette I. J., Bermingham E. c-mos variation in songbirds: molecular evolution, phylogenetic implications, and comparisons with mitochondrial differentiation. Mol Biol Evol. 2000 Oct;17(10):1569–1577. doi: 10.1093/oxfordjournals.molbev.a026255. [DOI] [PubMed] [Google Scholar]
  13. Madsen O., Scally M., Douady C. J., Kao D. J., DeBry R. W., Adkins R., Amrine H. M., Stanhope M. J., de Jong W. W., Springer M. S. Parallel adaptive radiations in two major clades of placental mammals. Nature. 2001 Feb 1;409(6820):610–614. doi: 10.1038/35054544. [DOI] [PubMed] [Google Scholar]
  14. Rambaut A., Bromham L. Estimating divergence dates from molecular sequences. Mol Biol Evol. 1998 Apr;15(4):442–448. doi: 10.1093/oxfordjournals.molbev.a025940. [DOI] [PubMed] [Google Scholar]
  15. van Tuinen M., Hedges S. B. Calibration of avian molecular clocks. Mol Biol Evol. 2001 Feb;18(2):206–213. doi: 10.1093/oxfordjournals.molbev.a003794. [DOI] [PubMed] [Google Scholar]
  16. van Tuinen M., Sibley C. G., Hedges S. B. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol. 2000 Mar;17(3):451–457. doi: 10.1093/oxfordjournals.molbev.a026324. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES