Abstract
In many epidemiological models of microparasitic infections it is assumed that the infection process is governed by the mass-action principle, i.e. that the infection rate per host and per parasite is a constant. Furthermore, the parasite-induced host mortality (parasite virulence) and the reproduction rate of the parasite are often assumed to be independent of the infecting parasite dose. However, there is empirical evidence against those three assumptions: the infection rate per host is often found to be a sigmoidal rather than a linear function of the parasite dose to which it is exposed; and the lifespan of infected hosts as well as the reproduction rate of the parasite are often negatively correlated with the parasite dose. Here, we incorporate dose dependences into the standard modelling framework for microparasitic infections, and draw conclusions on the resulting dynamics. Our model displays an Allee effect that is characterized by an invasion threshold for the parasite. Furthermore, in contrast to standard epidemiological models a parasite strain needs to have a basic reproductive rate that is substantially greater than 1 to establish an infection. Thus, the conditions for successful invasion of the parasite are more restrictive than in mass-action infection models. The analysis further suggests that negative correlations of the parasite dose with host lifespan and the parasite reproduction rate helps the parasite to overcome the invasion constraints of the Allee-type dynamics.
Full Text
The Full Text of this article is available as a PDF (182.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. M., May R. M. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. doi: 10.1017/s0031182000055360. [DOI] [PubMed] [Google Scholar]
- Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
- Ashworth S. T., Kennedy C. R., Blanc G. Density-dependent effects of Anguillicola crassus (Nematoda) within and on its copepod intermediate hosts. Parasitology. 1996 Sep;113(Pt 3):303–309. doi: 10.1017/s003118200008207x. [DOI] [PubMed] [Google Scholar]
- Bremermann H. J., Thieme H. R. A competitive exclusion principle for pathogen virulence. J Math Biol. 1989;27(2):179–190. doi: 10.1007/BF00276102. [DOI] [PubMed] [Google Scholar]
- Courchamp F, Clutton-Brock T, Grenfell B. Inverse density dependence and the Allee effect. Trends Ecol Evol. 1999 Oct;14(10):405–410. doi: 10.1016/s0169-5347(99)01683-3. [DOI] [PubMed] [Google Scholar]
- Cunningham J. A deterministic model for measles. Z Naturforsch C. 1979 Aug;34(7-8):647–648. doi: 10.1515/znc-1979-7-829. [DOI] [PubMed] [Google Scholar]
- Diekmann O., Heesterbeek J. A., Metz J. A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–382. doi: 10.1007/BF00178324. [DOI] [PubMed] [Google Scholar]
- Diekmann O., Kretzschmar M. Patterns in the effects of infectious diseases on population growth. J Math Biol. 1991;29(6):539–570. doi: 10.1007/BF00164051. [DOI] [PubMed] [Google Scholar]
- Diffley P., Scott J. O., Mama K., Tsen T. N. The rate of proliferation among African trypanosomes is a stable trait that is directly related to virulence. Am J Trop Med Hyg. 1987 May;36(3):533–540. doi: 10.4269/ajtmh.1987.36.533. [DOI] [PubMed] [Google Scholar]
- Dobson C., Owen M. E. Influence of serial passage on the infectivity and immunogenicity of Nematospiroides dubius in mice. Int J Parasitol. 1977 Dec;7(6):463–466. doi: 10.1016/0020-7519(77)90007-8. [DOI] [PubMed] [Google Scholar]
- Dushoff J. Incorporating immunological ideas in epidemiological models. J Theor Biol. 1996 Jun 7;180(3):181–187. doi: 10.1006/jtbi.1996.0094. [DOI] [PubMed] [Google Scholar]
- Glynn J. R., Lines J., Bradley D. J. Impregnated bednets and the dose-severity relationship in malaria. Parasitol Today. 1994 Jul;10(7):279–281. doi: 10.1016/0169-4758(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Keymer A. Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology. 1982 Jun;84(Pt 3):573–587. doi: 10.1017/s0031182000052847. [DOI] [PubMed] [Google Scholar]
- Little T. J., Ebert D. The cause of parasitic infection in natural populations of Daphnia (Crustacea: Cladocera): the role of host genetics. Proc Biol Sci. 2000 Oct 22;267(1457):2037–2042. doi: 10.1098/rspb.2000.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W. M., Hethcote H. W., Levin S. A. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. 1987;25(4):359–380. doi: 10.1007/BF00277162. [DOI] [PubMed] [Google Scholar]
- Liu W. M., Levin S. A., Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol. 1986;23(2):187–204. doi: 10.1007/BF00276956. [DOI] [PubMed] [Google Scholar]
- Macdonald G. The dynamics of helminth infections, with special reference to schistosomes. Trans R Soc Trop Med Hyg. 1965 Sep;59(5):489–506. doi: 10.1016/0035-9203(65)90152-5. [DOI] [PubMed] [Google Scholar]
- May R. M., Anderson R. M. Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond B Biol Sci. 1983 Oct 22;219(1216):281–313. doi: 10.1098/rspb.1983.0075. [DOI] [PubMed] [Google Scholar]
- McLean A. R., Bostock C. J. Scrapie infections initiated at varying doses: an analysis of 117 titration experiments. Philos Trans R Soc Lond B Biol Sci. 2000 Aug 29;355(1400):1043–1050. doi: 10.1098/rstb.2000.0641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael E., Bundy D. A. Density dependence in establishment, growth and worm fecundity in intestinal helminthiasis: the population biology of Trichuris muris (Nematoda) infection in CBA/Ca mice. Parasitology. 1989 Jun;98(Pt 3):451–458. doi: 10.1017/s0031182000061540. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
- Schweitzer A. N., Anderson R. M. Dynamic interaction between CD4+ T cells and parasitic helminths: mathematical models of heterogeneity in outcome. Parasitology. 1992 Dec;105(Pt 3):513–522. doi: 10.1017/s0031182000074692. [DOI] [PubMed] [Google Scholar]
- Schweitzer A. N. CD4+ T-cell dynamics and host predisposition to infection. Infect Immun. 1993 Apr;61(4):1516–1522. doi: 10.1128/iai.61.4.1516-1522.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens PA, Sutherland WJ. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol. 1999 Oct;14(10):401–405. doi: 10.1016/s0169-5347(99)01684-5. [DOI] [PubMed] [Google Scholar]
- Wilson E. B., Worcester J. The Law of Mass Action in Epidemiology. Proc Natl Acad Sci U S A. 1945 Jan;31(1):24–34. doi: 10.1073/pnas.31.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson E. B., Worcester J. The Law of Mass Action in Epidemiology: II. Proc Natl Acad Sci U S A. 1945 Apr;31(4):109–116. doi: 10.1073/pnas.31.4.109. [DOI] [PMC free article] [PubMed] [Google Scholar]