Abstract
Recent work on the diapausing egg banks of zooplankton, such as Daphnia (Crustacea: Anomopoda), indicates that these eggs can remain viable for decades while, theoretically, DNA can remain intact for even longer periods (i.e. centuries or millennia). We isolated diapausing eggs of Daphnia from a 30 m long sediment core taken from a hypereutrophic, northern German lake (Belauer See), with some eggs found in dated core material as old as 4500 years. Using microsatellite markers, we analysed the genetic structure of the resting eggs dated as old as ca. 200 years, and found that, although levels of heterozygosity remained remarkably stable, significant genetic differentiation (Nei's D = 0.36; F(ST) = 0.15) between recent and 'ancient' resting eggs (including allele frequency shifts and private alleles) was detected. These shifts represent either species-level changes in this complex (i.e. species-specific characters of ephippia are not always robust), or intraspecific shifts in genetic variation, or a combination of both. This study demonstrates that the egg banks of aquatic zooplankton can serve as repositories of both genetic (intrapopulational) and ecological (interspecific) information. The use of molecular markers, such as microsatellites, on diapausing egg/seed banks may open new avenues of enquiry related to tracking the long-term genetic (and/or species) shifts that are associated with long-term environmental changes.
Full Text
The Full Text of this article is available as a PDF (287.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cano R. J., Poinar H. N., Pieniazek N. J., Acra A., Poinar G. O., Jr Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature. 1993 Jun 10;363(6429):536–538. doi: 10.1038/363536a0. [DOI] [PubMed] [Google Scholar]
- Cohen D. Optimizing reproduction in a randomly varying environment. J Theor Biol. 1966 Sep;12(1):119–129. doi: 10.1016/0022-5193(66)90188-3. [DOI] [PubMed] [Google Scholar]
- Cooper A., Mourer-Chauviré C., Chambers G. K., von Haeseler A., Wilson A. C., Päbo S. Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8741–8744. doi: 10.1073/pnas.89.18.8741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cousyn C., De Meester L., Colbourne J. K., Brendonck L., Verschuren D., Volckaert F. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6256–6260. doi: 10.1073/pnas.111606798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeSalle R., Barcia M., Wray C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia. 1993 Oct 15;49(10):906–909. doi: 10.1007/BF01952607. [DOI] [PubMed] [Google Scholar]
- Golenberg E. M., Giannasi D. E., Clegg M. T., Smiley C. J., Durbin M., Henderson D., Zurawski G. Chloroplast DNA sequence from a miocene Magnolia species. Nature. 1990 Apr 12;344(6267):656–658. doi: 10.1038/344656a0. [DOI] [PubMed] [Google Scholar]
- Haas C. J., Zink A., Pálfi G., Szeimies U., Nerlich A. G. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am J Clin Pathol. 2000 Sep;114(3):428–436. doi: 10.1093/ajcp/114.3.428. [DOI] [PubMed] [Google Scholar]
- Handt O., Krings M., Ward R. H., Päbo S. The retrieval of ancient human DNA sequences. Am J Hum Genet. 1996 Aug;59(2):368–376. [PMC free article] [PubMed] [Google Scholar]
- Higuchi R., Bowman B., Freiberger M., Ryder O. A., Wilson A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984 Nov 15;312(5991):282–284. doi: 10.1038/312282a0. [DOI] [PubMed] [Google Scholar]
- Hänni C., Laudet V., Coll J., Stehelin D. An unusual mitochondrial DNA sequence variant from an Egyptian mummy. Genomics. 1994 Jul 15;22(2):487–489. doi: 10.1006/geno.1994.1417. [DOI] [PubMed] [Google Scholar]
- Höss M. Neanderthal population genetics. Nature. 2000 Mar 30;404(6777):453–454. doi: 10.1038/35006551. [DOI] [PubMed] [Google Scholar]
- Krings M., Stone A., Schmitz R. W., Krainitzki H., Stoneking M., Päbo S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997 Jul 11;90(1):19–30. doi: 10.1016/s0092-8674(00)80310-4. [DOI] [PubMed] [Google Scholar]
- Ovchinnikov I. V., Götherström A., Romanova G. P., Kharitonov V. M., Lidén K., Goodwin W. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature. 2000 Mar 30;404(6777):490–493. doi: 10.1038/35006625. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0225. [DOI] [PMC free article] [Google Scholar]
- Päbo S., Higuchi R. G., Wilson A. C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem. 1989 Jun 15;264(17):9709–9712. [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]
- Wright S. Systems of Mating. V. General Considerations. Genetics. 1921 Mar;6(2):167–178. doi: 10.1093/genetics/6.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]