Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Feb 22;269(1489):335–343. doi: 10.1098/rspb.2001.1898

Understanding the persistence of measles: reconciling theory, simulation and observation.

Matt J Keeling 1, Bryan T Grenfell 1
PMCID: PMC1690899  PMID: 11886620

Abstract

Ever since the pattern of localized extinction associated with measles was discovered by Bartlett in 1957, many models have been developed in an attempt to reproduce this phenomenon. Recently, the use of constant infectious and incubation periods, rather than the more convenient exponential forms, has been presented as a simple means of obtaining realistic persistence levels. However, this result appears at odds with rigorous mathematical theory; here we reconcile these differences. Using a deterministic approach, we parameterize a variety of models to fit the observed biennial attractor, thus determining the level of seasonality by the choice of model. We can then compare fairly the persistence of the stochastic versions of these models, using the 'best-fit' parameters. Finally, we consider the differences between the observed fade-out pattern and the more theoretically appealing 'first passage time'.

Full Text

The Full Text of this article is available as a PDF (703.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H., Britton T. Stochastic epidemics in dynamic populations: quasi-stationarity and extinction. J Math Biol. 2000 Dec;41(6):559–580. doi: 10.1007/s002850000060. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
  3. Aron J. L., Schwartz I. B. Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol. 1984 Oct 21;110(4):665–679. doi: 10.1016/s0022-5193(84)80150-2. [DOI] [PubMed] [Google Scholar]
  4. Bascompte J., Rodríguez-Trelles F. Eradication thresholds in epidemiology, conservation biology and genetics. J Theor Biol. 1998 Jun 21;192(4):415–418. doi: 10.1006/jtbi.1997.0588. [DOI] [PubMed] [Google Scholar]
  5. Black F. L. Measles endemicity in insular populations: critical community size and its evolutionary implication. J Theor Biol. 1966 Jul;11(2):207–211. doi: 10.1016/0022-5193(66)90161-5. [DOI] [PubMed] [Google Scholar]
  6. Bolker B. Chaos and complexity in measles models: a comparative numerical study. IMA J Math Appl Med Biol. 1993;10(2):83–95. doi: 10.1093/imammb/10.2.83. [DOI] [PubMed] [Google Scholar]
  7. Bolker B., Grenfell B. Space, persistence and dynamics of measles epidemics. Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):309–320. doi: 10.1098/rstb.1995.0070. [DOI] [PubMed] [Google Scholar]
  8. Caraco T., Duryea M., Gardner G., Maniatty W., Szymanski B. K. Host spatial heterogeneity and extinction of an SIS epidemic. J Theor Biol. 1998 Jun 7;192(3):351–361. doi: 10.1006/jtbi.1998.0663. [DOI] [PubMed] [Google Scholar]
  9. Earn D. J., Rohani P., Bolker B. M., Grenfell B. T. A simple model for complex dynamical transitions in epidemics. Science. 2000 Jan 28;287(5453):667–670. doi: 10.1126/science.287.5453.667. [DOI] [PubMed] [Google Scholar]
  10. Earn D. J., Rohani P., Grenfell B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc Biol Sci. 1998 Jan 7;265(1390):7–10. doi: 10.1098/rspb.1998.0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grossman Z. Oscillatory phenomena in a model of infectious diseases. Theor Popul Biol. 1980 Oct;18(2):204–243. doi: 10.1016/0040-5809(80)90050-7. [DOI] [PubMed] [Google Scholar]
  12. Keeling M. J., Grenfell B. T. Disease extinction and community size: modeling the persistence of measles. Science. 1997 Jan 3;275(5296):65–67. doi: 10.1126/science.275.5296.65. [DOI] [PubMed] [Google Scholar]
  13. Keeling M. J. Modelling the persistence of measles. Trends Microbiol. 1997 Dec;5(12):513–518. doi: 10.1016/S0966-842X(97)01147-5. [DOI] [PubMed] [Google Scholar]
  14. Keeling M., Grenfell B. Stochastic dynamics and a power law for measles variability. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):769–776. doi: 10.1098/rstb.1999.0429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lloyd A. L. Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc Biol Sci. 2001 May 7;268(1470):985–993. doi: 10.1098/rspb.2001.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marion G., Renshaw E., Gibson G. Stochastic modelling of environmental variation for biological populations. Theor Popul Biol. 2000 May;57(3):197–217. doi: 10.1006/tpbi.2000.1450. [DOI] [PubMed] [Google Scholar]
  17. May R. M., Anderson R. M. Population biology of infectious diseases: Part II. Nature. 1979 Aug 9;280(5722):455–461. doi: 10.1038/280455a0. [DOI] [PubMed] [Google Scholar]
  18. Olsen L. F., Schaffer W. M. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science. 1990 Aug 3;249(4968):499–504. doi: 10.1126/science.2382131. [DOI] [PubMed] [Google Scholar]
  19. Rand D. A., Wilson H. B. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc Biol Sci. 1991 Nov 22;246(1316):179–184. doi: 10.1098/rspb.1991.0142. [DOI] [PubMed] [Google Scholar]
  20. SIMPSON R. E. H. Infectiousness of communicable diseases in the household (measles, chickenpox, and mumps). Lancet. 1952 Sep 20;2(6734):549–554. doi: 10.1016/s0140-6736(52)91357-3. [DOI] [PubMed] [Google Scholar]
  21. Saether B. E., Engen S., Lande R., Arcese P., Smith J. N. Estimating the time to extinction in an island population of song sparrows. Proc Biol Sci. 2000 Mar 22;267(1443):621–626. doi: 10.1098/rspb.2000.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–191. doi: 10.1093/imammb/1.2.169. [DOI] [PubMed] [Google Scholar]
  23. Swinton J. Extinction times and phase transitions for spatially structured closed epidemics. Bull Math Biol. 1998 Mar;60(2):215–230. doi: 10.1006/bulm.1997.0014. [DOI] [PubMed] [Google Scholar]
  24. van Herwaarden O. A. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. J Math Biol. 1997 Aug;35(7):793–813. doi: 10.1007/s002850050077. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES