Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Feb 22;269(1489):431–436. doi: 10.1098/rspb.2001.1903

A large gene family for putative variant antigens shared by human and rodent malaria parasites.

Christoph S Janssen 1, Michael P Barrett 1, C Michael R Turner 1, R Stephen Phillips 1
PMCID: PMC1690903  PMID: 11886633

Abstract

A major mechanism whereby malaria parasites evade the host immune response to give chronic infections in patients' blood for months, or even years, is antigenic variation. In order to generate variant antigens, parasites require large multigene families. Although several gene families involved in these phenomena have been identified in the human malaria Plasmodium falciparum, to date no variant antigen gene families have been identified in malaria species that will infect widely used rodent laboratory hosts. Here we present, for the first time, to our knowledge, a large multigene family conserved in both rodent and human malarias, which is a strong candidate as a major variant antigen gene family. In each of four species of Plasmodium, three rodent malarias and the human pathogen P. vivax, homologues of the gene family were found to have a conserved three-exon structure. In the rodent malaria P. chabaudi, transcription of members of the gene family was developmentally regulated with maximum expression in late trophozoite stages, which is the developmental stage known to express variant antigen proteins.

Full Text

The Full Text of this article is available as a PDF (547.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baruch D. I., Ma X. C., Singh H. B., Bi X., Pasloske B. L., Howard R. J. Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. Blood. 1997 Nov 1;90(9):3766–3775. [PubMed] [Google Scholar]
  3. Biggs B. A., Anders R. F., Dillon H. E., Davern K. M., Martin M., Petersen C., Brown G. V. Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum. J Immunol. 1992 Sep 15;149(6):2047–2054. [PubMed] [Google Scholar]
  4. Bowman S., Lawson D., Basham D., Brown D., Chillingworth T., Churcher C. M., Craig A., Davies R. M., Devlin K., Feltwell T. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature. 1999 Aug 5;400(6744):532–538. doi: 10.1038/22964. [DOI] [PubMed] [Google Scholar]
  5. Brannan L. R., Turner C. M., Phillips R. S. Malaria parasites undergo antigenic variation at high rates in vivo. Proc Biol Sci. 1994 Apr 22;256(1345):71–75. doi: 10.1098/rspb.1994.0051. [DOI] [PubMed] [Google Scholar]
  6. Brooks D. R., McLennan D. A. The evolutionary origin of Plasmodium falciparum. J Parasitol. 1992 Jun;78(3):564–566. [PubMed] [Google Scholar]
  7. Brown K. N., Brown I. N. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965 Dec 25;208(5017):1286–1288. doi: 10.1038/2081286a0. [DOI] [PubMed] [Google Scholar]
  8. Carlton JM, Dame JB. The plasmodium vivax and P. berghei gene sequence tag projects. Parasitol Today. 2000 Oct;16(10):409–409. doi: 10.1016/s0169-4758(00)01781-6. [DOI] [PubMed] [Google Scholar]
  9. Chen Q., Fernandez V., Sundström A., Schlichtherle M., Datta S., Hagblom P., Wahlgren M. Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998 Jul 23;394(6691):392–395. doi: 10.1038/28660. [DOI] [PubMed] [Google Scholar]
  10. Cheng Q., Cloonan N., Fischer K., Thompson J., Waine G., Lanzer M., Saul A. stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol Biochem Parasitol. 1998 Nov 30;97(1-2):161–176. doi: 10.1016/s0166-6851(98)00144-3. [DOI] [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Dore E., Pace T., Ponzi M., Picci L., Frontali C. Organization of subtelomeric repeats in Plasmodium berghei. Mol Cell Biol. 1990 May;10(5):2423–2427. doi: 10.1128/mcb.10.5.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  14. Fernandez V., Hommel M., Chen Q., Hagblom P., Wahlgren M. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med. 1999 Nov 15;190(10):1393–1404. doi: 10.1084/jem.190.10.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Handunnetti S. M., Mendis K. N., David P. H. Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. J Exp Med. 1987 May 1;165(5):1269–1283. doi: 10.1084/jem.165.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hommel M., David P. H., Oligino L. D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983 Apr 1;157(4):1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janssen C. S., Barrett M. P., Lawson D., Quail M. A., Harris D., Bowman S., Phillips R. S., Turner C. M. Gene discovery in Plasmodium chabaudi by genome survey sequencing. Mol Biochem Parasitol. 2001 Apr 6;113(2):251–260. doi: 10.1016/s0166-6851(01)00224-9. [DOI] [PubMed] [Google Scholar]
  18. Kyes S. A., Rowe J. A., Kriek N., Newbold C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9333–9338. doi: 10.1073/pnas.96.16.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McLean S. A., Pearson C. D., Phillips R. S. Plasmodium chabaudi: antigenic variation during recrudescent parasitaemias in mice. Exp Parasitol. 1982 Dec;54(3):296–302. doi: 10.1016/0014-4894(82)90038-8. [DOI] [PubMed] [Google Scholar]
  21. Morgenstern B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics. 1999 Mar;15(3):211–218. doi: 10.1093/bioinformatics/15.3.211. [DOI] [PubMed] [Google Scholar]
  22. Pace T., Ponzi M., Dore E., Frontali C. Telomeric motifs are present in a highly repetitive element in the Plasmodium berghei genome. Mol Biochem Parasitol. 1987 Jun;24(2):193–202. doi: 10.1016/0166-6851(87)90106-x. [DOI] [PubMed] [Google Scholar]
  23. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  24. Pearson W. R. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol. 2000;132:185–219. doi: 10.1385/1-59259-192-2:185. [DOI] [PubMed] [Google Scholar]
  25. Phillips R. S., Brannan L. R., Balmer P., Neuville P. Antigenic variation during malaria infection--the contribution from the murine parasite Plasmodium chabaudi. Parasite Immunol. 1997 Sep;19(9):427–434. doi: 10.1046/j.1365-3024.1997.d01-239.x. [DOI] [PubMed] [Google Scholar]
  26. Phillips R. S. Current status of malaria and potential for control. Clin Microbiol Rev. 2001 Jan;14(1):208–226. doi: 10.1128/CMR.14.1.208-226.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. Artemis: sequence visualization and annotation. Bioinformatics. 2000 Oct;16(10):944–945. doi: 10.1093/bioinformatics/16.10.944. [DOI] [PubMed] [Google Scholar]
  28. Saul A. The role of variant surface antigens on malaria-infected red blood cells. Parasitol Today. 1999 Nov;15(11):455–457. doi: 10.1016/s0169-4758(99)01534-3. [DOI] [PubMed] [Google Scholar]
  29. Scherf A., Hernandez-Rivas R., Buffet P., Bottius E., Benatar C., Pouvelle B., Gysin J., Lanzer M. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998 Sep 15;17(18):5418–5426. doi: 10.1093/emboj/17.18.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Siddall M. E., Barta J. R. Phylogeny of Plasmodium species: estimation and inference. J Parasitol. 1992 Jun;78(3):567–568. [PubMed] [Google Scholar]
  31. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strimmer K., von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6815–6819. doi: 10.1073/pnas.94.13.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  34. Voller A., Rossan R. N. Immunological studies with simian malarias. I. Antigenic variants of Plasmodium cynomolgi bastianellii. Trans R Soc Trop Med Hyg. 1969;63(1):46–56. doi: 10.1016/0035-9203(69)90065-0. [DOI] [PubMed] [Google Scholar]
  35. del Portillo H. A., Fernandez-Becerra C., Bowman S., Oliver K., Preuss M., Sanchez C. P., Schneider N. K., Villalobos J. M., Rajandream M. A., Harris D. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature. 2001 Apr 12;410(6830):839–842. doi: 10.1038/35071118. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES