Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Feb 22;269(1489):397–402. doi: 10.1098/rspb.2001.1889

Mixed inoculation alters infection success of strains of the endophyte Epichloë bromicola on its grass host Bromus erectus.

Patrick Wille 1, Thomas Boller 1, Oliver Kaltz 1
PMCID: PMC1690907  PMID: 11886628

Abstract

Within-host competition in multiply infected hosts is considered an important component of host-parasite interactions, but experimental studies on the dynamics of multiple infections are still rare. We measured the infection frequencies of four strains of the fungal endophyte Epichloë bromicola on two genotypes of its host plant Bromus erectus after single- and double-strain inoculation. Double-strain inoculations resulted in fewer double, but more single, infections than expected on the basis of infection frequencies in single-strain inoculations. In most cases, only one of the two strains established an infection, and strains differed in their overall competitive ability. This pattern resembles the mutual exclusion scenarios in some theoretical models of parasite evolution. In addition, competitive ability varied with host genotype, which may represent a mechanism for the coexistence of strains in a population. Hence, considering the genetic variation in both host and parasite may be important for a better understanding of within-host dynamics and their role in epidemiology or (co)evolution.

Full Text

The Full Text of this article is available as a PDF (119.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antia R., Nowak M. A., Anderson R. M. Antigenic variation and the within-host dynamics of parasites. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):985–989. doi: 10.1073/pnas.93.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonhoeffer S., Nowak M. A. Intra-host versus inter-host selection: viral strategies of immune function impairment. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8062–8066. doi: 10.1073/pnas.91.17.8062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bremermann H. J., Pickering J. A game-theoretical model of parasite virulence. J Theor Biol. 1983 Feb 7;100(3):411–426. doi: 10.1016/0022-5193(83)90438-1. [DOI] [PubMed] [Google Scholar]
  4. Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
  5. Frank S. A. Kin selection and virulence in the evolution of protocells and parasites. Proc Biol Sci. 1994 Nov 22;258(1352):153–161. doi: 10.1098/rspb.1994.0156. [DOI] [PubMed] [Google Scholar]
  6. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  7. Gandon S., Jansen V. A., van Baalen M. Host life history and the evolution of parasite virulence. Evolution. 2001 May;55(5):1056–1062. doi: 10.1554/0014-3820(2001)055[1056:hlhate]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  8. Gandon S. The curse of the pharaoh hypothesis. Proc Biol Sci. 1998 Aug 22;265(1405):1545–1552. doi: 10.1098/rspb.1998.0470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Groppe K., Sanders I., Wiemken A., Boller T. A microsatellite marker for studying the ecology and diversity of fungal endophytes (Epichloë spp.) in grasses. Appl Environ Microbiol. 1995 Nov;61(11):3943–3949. doi: 10.1128/aem.61.11.3943-3949.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hellriegel B. Modelling the immune response to malaria with ecological concepts: short-term behaviour against long-term equilibrium. Proc Biol Sci. 1992 Dec 22;250(1329):249–256. doi: 10.1098/rspb.1992.0156. [DOI] [PubMed] [Google Scholar]
  11. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  12. Levin B. R., Bull J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994 Mar;2(3):76–81. doi: 10.1016/0966-842x(94)90538-x. [DOI] [PubMed] [Google Scholar]
  13. Lipsitch M., Moxon E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 1997 Jan;5(1):31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
  14. Mosquera J., Adler F. R. Evolution of virulence: a unified framework for coinfection and superinfection. J Theor Biol. 1998 Dec 7;195(3):293–313. doi: 10.1006/jtbi.1998.0793. [DOI] [PubMed] [Google Scholar]
  15. Ni Y., Kemp M. C. Strain-specific selection of genome segments in avian reovirus coinfections. J Gen Virol. 1992 Dec;73(Pt 12):3107–3113. doi: 10.1099/0022-1317-73-12-3107. [DOI] [PubMed] [Google Scholar]
  16. Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
  17. doi: 10.1098/rspb.1998.0549. [DOI] [PMC free article] [Google Scholar]
  18. Regoes R. R., Nowak M. A., Bonhoeffer S. Evolution of virulence in a heterogeneous host population. Evolution. 2000 Feb;54(1):64–71. doi: 10.1111/j.0014-3820.2000.tb00008.x. [DOI] [PubMed] [Google Scholar]
  19. Schardl C. L. EPICHLOE SPECIES: fungal symbionts of grasses. Annu Rev Phytopathol. 1996;34:109–130. doi: 10.1146/annurev.phyto.34.1.109. [DOI] [PubMed] [Google Scholar]
  20. Scott B. Epichloë endophytes: fungal symbionts of grasses. Curr Opin Microbiol. 2001 Aug;4(4):393–398. doi: 10.1016/s1369-5274(00)00224-1. [DOI] [PubMed] [Google Scholar]
  21. Timms R., Colegrave N., Chan B. H., Read A. F. The effect of parasite dose on disease severity in the rodent malaria Plasmodium chabaudi. Parasitology. 2001 Jul;123(Pt 1):1–11. doi: 10.1017/s0031182001008083. [DOI] [PubMed] [Google Scholar]
  22. Turner P. E., Chao L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics. 1998 Oct;150(2):523–532. doi: 10.1093/genetics/150.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Alfen N. K., Jaynes R. A., Anagnostakis S. L., Day P. R. Chestnut Blight: Biological Control by Transmissible Hypovirulence in Endothia parasitica. Science. 1975 Sep 12;189(4206):890–891. doi: 10.1126/science.189.4206.890. [DOI] [PubMed] [Google Scholar]
  24. Wille P. A., Aeschbacher R. A., Boller T. Distribution of fungal endophyte genotypes in doubly infected host grasses. Plant J. 1999 May;18(4):349–358. doi: 10.1046/j.1365-313x.1999.00462.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES