Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Mar 7;269(1490):467–473. doi: 10.1098/rspb.2001.1854

Efficiency of gamete usage in nature: sperm storage, fertilization and polyspermy.

Rhonda R Snook 1, Therese Ann Markow 1
PMCID: PMC1690912  PMID: 11886638

Abstract

Gamete production for both males and females can be energetically expensive such that selection should maximize fertilization opportunities while minimizing fertilization costs. In laboratory studies of Drosophila reproduction, however, the failure of eggs to yield adult progeny can be quite high, suggesting that female control over gamete utilization is surprisingly inefficient. We examined gamete utilization in D. pseudoobscura from nature and compared our observations to those for laboratory populations. In natural populations 100% of oviposited eggs effectively produce adult progeny, and fertilization is exclusively monospermic, indicating that in nature, D. pseudoobscura females maintain a very strict control over their reproduction such that gamete usage is extremely efficient. The potential reasons for the inefficient gamete utilization in the laboratory, as well as the potential impact on laboratory studies of sperm competition, sexual conflict, and the evolution of reproductive barriers are discussed. Furthermore, in this sperm-heteromorphic species, our observations show definitively that in nature, as well as in the laboratory, only the long sperm morph participates in fertilization.

Full Text

The Full Text of this article is available as a PDF (223.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Callaini G., Riparbelli M. G. Fertilization in Drosophila melanogaster: centrosome inheritance and organization of the first mitotic spindle. Dev Biol. 1996 Jun 15;176(2):199–208. doi: 10.1006/dbio.1996.0127. [DOI] [PubMed] [Google Scholar]
  2. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  3. Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hosken D. J., Garner T. W., Ward P. I. Sexual conflict selects for male and female reproductive characters. Curr Biol. 2001 Apr 3;11(7):489–493. doi: 10.1016/s0960-9822(01)00146-4. [DOI] [PubMed] [Google Scholar]
  5. Hunter R. H. Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev. 1996 Jul;44(3):417–422. doi: 10.1002/(SICI)1098-2795(199607)44:3<417::AID-MRD15>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  6. Hunter R. H. Sperm-egg interactions in the pig: monospermy, extensive polyspermy, and the formation of chromatin aggregates. J Anat. 1976 Sep;122(Pt 1):43–59. [PMC free article] [PubMed] [Google Scholar]
  7. Knowles L. L., Markow T. A. Sexually antagonistic coevolution of a postmating-prezygotic reproductive character in desert Drosophila. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8692–8696. doi: 10.1073/pnas.151123998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lambert C. C. Germ-cell warfare in ascidians: sperm from one species can interfere with the fertilization of a second species. Biol Bull. 2000 Feb;198(1):22–25. doi: 10.2307/1542799. [DOI] [PubMed] [Google Scholar]
  9. Liu L., Keefe D. L. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol Reprod. 2000 Jun;62(6):1828–1834. doi: 10.1095/biolreprod62.6.1828. [DOI] [PubMed] [Google Scholar]
  10. Markow T. A. Assortative fertilization in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7756–7760. doi: 10.1073/pnas.94.15.7756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markow T. A. Reproductive behavior of Drosophila melanogaster and D. nigrospiracula in the field and in the laboratory. J Comp Psychol. 1988 Jun;102(2):169–173. doi: 10.1037/0735-7036.102.2.169. [DOI] [PubMed] [Google Scholar]
  12. Markow TA. Forced Matings in Natural Populations of Drosophila. Am Nat. 2000 Jul;156(1):100–103. doi: 10.1086/303368. [DOI] [PubMed] [Google Scholar]
  13. Partridge L., Prowse N. The effects of reproduction on longevity and fertility in male Drosophila melanogaster. J Insect Physiol. 1997 Jun;43(6):501–512. doi: 10.1016/s0022-1910(97)00014-0. [DOI] [PubMed] [Google Scholar]
  14. Pitnick S., Markow T. A. Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9277–9281. doi: 10.1073/pnas.91.20.9277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pitnick S., Miller G. T., Reagan J., Holland B. Males' evolutionary responses to experimental removal of sexual selection. Proc Biol Sci. 2001 May 22;268(1471):1071–1080. doi: 10.1098/rspb.2001.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Price C. S., Dyer K. A., Coyne J. A. Sperm competition between Drosophila males involves both displacement and incapacitation. Nature. 1999 Jul 29;400(6743):449–452. doi: 10.1038/22755. [DOI] [PubMed] [Google Scholar]
  17. Price C. S., Kim C. H., Gronlund C. J., Coyne J. A. Cryptic reproductive isolation in the Drosophila simulans species complex. Evolution. 2001 Jan;55(1):81–92. doi: 10.1111/j.0014-3820.2001.tb01274.x. [DOI] [PubMed] [Google Scholar]
  18. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  19. Snook R. R., Karr T. L. Only long sperm are fertilization-competent in six sperm-heteromorphic Drosophila species. Curr Biol. 1998 Feb 26;8(5):291–294. doi: 10.1016/s0960-9822(98)70112-5. [DOI] [PubMed] [Google Scholar]
  20. Snook R. R., Markow T. A. Mating system evolution in sperm-heteromorphic Drosophila. J Insect Physiol. 2001 Sep;47(9):957–964. doi: 10.1016/s0022-1910(01)00070-1. [DOI] [PubMed] [Google Scholar]
  21. Snook RR. The risk of sperm competition and the evolution of sperm heteromorphism. Anim Behav. 1998 Dec;56(6):1497–1507. doi: 10.1006/anbe.1998.0930. [DOI] [PubMed] [Google Scholar]
  22. Soller M., Bownes M., Kubli E. Control of oocyte maturation in sexually mature Drosophila females. Dev Biol. 1999 Apr 15;208(2):337–351. doi: 10.1006/dbio.1999.9210. [DOI] [PubMed] [Google Scholar]
  23. Suarez S. S. Carbohydrate-mediated formation of the oviductal sperm reservoir in mammals. Cells Tissues Organs. 2001;168(1-2):105–112. doi: 10.1159/000016811. [DOI] [PubMed] [Google Scholar]
  24. Wade M. J., Patterson H., Chang N. W., Johnson N. A. Postcopulatory, prezygotic isolation in flour beetles. Heredity (Edinb) 1994 Feb;72(Pt 2):163–167. doi: 10.1038/hdy.1994.23. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES