Abstract
The subthalamic nucleus (STN) and external globus pallidus (GP) form a recurrent excitatory-inhibitory interaction within the basal ganglia. Through a computational model of these interactions we show that, under the influence of appropriate external input, the two nuclei can be switched between states of high and low activity or can generate oscillations consisting of bursts of high-frequency activity repeated at a low rate. It is further demonstrated from the model that the generation of the repetitive bursting behaviour is favoured by increased inhibition of the GP, which is a condition indicated in Parkinson's disease. Paradoxically, increased striatal inhibition of the GP is predicted to cause an increase rather than a decrease in its mean firing rate. These behaviours, arising from a biologically inspired computational model of the STN-GP interaction, have important consequences for basal ganglia function and dysfunction.
Full Text
The Full Text of this article is available as a PDF (186.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afsharpour S. Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol. 1985 Jun 1;236(1):1–13. doi: 10.1002/cne.902360102. [DOI] [PubMed] [Google Scholar]
- Albin R. L., Young A. B., Penney J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989 Oct;12(10):366–375. doi: 10.1016/0166-2236(89)90074-x. [DOI] [PubMed] [Google Scholar]
- Alexander G. E., Crutcher M. D., DeLong M. R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res. 1990;85:119–146. [PubMed] [Google Scholar]
- Beiser D. G., Houk J. C. Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol. 1998 Jun;79(6):3168–3188. doi: 10.1152/jn.1998.79.6.3168. [DOI] [PubMed] [Google Scholar]
- Bergman H., Wichmann T., Karmon B., DeLong M. R. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994 Aug;72(2):507–520. doi: 10.1152/jn.1994.72.2.507. [DOI] [PubMed] [Google Scholar]
- Ermentrout G. B., Cowan J. D. Temporal oscillations in neuronal nets. J Math Biol. 1979 Apr 18;7(3):265–280. doi: 10.1007/BF00275728. [DOI] [PubMed] [Google Scholar]
- Fujimoto K., Kita H. Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Res. 1993 Apr 23;609(1-2):185–192. doi: 10.1016/0006-8993(93)90872-k. [DOI] [PubMed] [Google Scholar]
- Gillies A. J., Willshaw D. J. A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proc Biol Sci. 1998 Nov 7;265(1410):2101–2109. doi: 10.1098/rspb.1998.0546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houk J. C., Wise S. P. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995 Mar-Apr;5(2):95–110. doi: 10.1093/cercor/5.2.95. [DOI] [PubMed] [Google Scholar]
- Iwahori N. A Golgi study on the subthalamic nucleus of the cat. J Comp Neurol. 1978 Dec 1;182(3):383–397. doi: 10.1002/cne.901820303. [DOI] [PubMed] [Google Scholar]
- Joel D., Weiner I. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res Brain Res Rev. 1997 Feb;23(1-2):62–78. doi: 10.1016/s0165-0173(96)00018-5. [DOI] [PubMed] [Google Scholar]
- Kita H., Chang H. T., Kitai S. T. Pallidal inputs to subthalamus: intracellular analysis. Brain Res. 1983 Apr 4;264(2):255–265. doi: 10.1016/0006-8993(83)90823-5. [DOI] [PubMed] [Google Scholar]
- Kita H., Chang H. T., Kitai S. T. The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis. J Comp Neurol. 1983 Apr 10;215(3):245–257. doi: 10.1002/cne.902150302. [DOI] [PubMed] [Google Scholar]
- Kita H., Kitai S. T. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 1991 Nov 15;564(2):296–305. doi: 10.1016/0006-8993(91)91466-e. [DOI] [PubMed] [Google Scholar]
- Kita H., Kitai S. T. The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res. 1994 Feb 14;636(2):308–319. doi: 10.1016/0006-8993(94)91030-8. [DOI] [PubMed] [Google Scholar]
- Kita H. Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat. Brain Res. 1992 Aug 28;589(1):84–90. doi: 10.1016/0006-8993(92)91164-a. [DOI] [PubMed] [Google Scholar]
- Levy R., Hutchison W. D., Lozano A. M., Dostrovsky J. O. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. 2000 Oct 15;20(20):7766–7775. doi: 10.1523/JNEUROSCI.20-20-07766.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magariños-Ascone C. M., Figueiras-Mendez R., Riva-Meana C., Córdoba-Fernández A. Subthalamic neuron activity related to tremor and movement in Parkinson's disease. Eur J Neurosci. 2000 Jul;12(7):2597–2607. doi: 10.1046/j.1460-9568.2000.00127.x. [DOI] [PubMed] [Google Scholar]
- Nakanishi H., Kita H., Kitai S. T. Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Res. 1987 Dec 22;437(1):35–44. doi: 10.1016/0006-8993(87)91524-1. [DOI] [PubMed] [Google Scholar]
- Nambu A., Llinaś R. Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol. 1994 Sep;72(3):1127–1139. doi: 10.1152/jn.1994.72.3.1127. [DOI] [PubMed] [Google Scholar]
- Nini A., Feingold A., Slovin H., Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol. 1995 Oct;74(4):1800–1805. doi: 10.1152/jn.1995.74.4.1800. [DOI] [PubMed] [Google Scholar]
- Plenz D., Herrera-Marschitz M., Kitai S. T. Morphological organization of the globus pallidus-subthalamic nucleus system studied in organotypic cultures. J Comp Neurol. 1998 Aug 10;397(4):437–457. doi: 10.1002/(sici)1096-9861(19980810)397:4<437::aid-cne1>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Plenz D., Kital S. T. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 1999 Aug 12;400(6745):677–682. doi: 10.1038/23281. [DOI] [PubMed] [Google Scholar]
- Redgrave P., Prescott T. J., Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009–1023. doi: 10.1016/s0306-4522(98)00319-4. [DOI] [PubMed] [Google Scholar]
- Shink E., Bevan M. D., Bolam J. P., Smith Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience. 1996 Jul;73(2):335–357. doi: 10.1016/0306-4522(96)00022-x. [DOI] [PubMed] [Google Scholar]
- Smith Y., Bevan M. D., Shink E., Bolam J. P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 1998 Sep;86(2):353–387. doi: 10.1016/s0306-4522(98)00004-9. [DOI] [PubMed] [Google Scholar]
- Smith Y., Bolam J. P. Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res. 1989 Jul 24;493(1):160–167. doi: 10.1016/0006-8993(89)91011-1. [DOI] [PubMed] [Google Scholar]
- Suri R. E., Schultz W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res. 1998 Aug;121(3):350–354. doi: 10.1007/s002210050467. [DOI] [PubMed] [Google Scholar]
- Wichmann T., DeLong M. R. Oscillations in the basal ganglia. Nature. 1999 Aug 12;400(6745):621–622. doi: 10.1038/23148. [DOI] [PubMed] [Google Scholar]