Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Apr 7;269(1492):735–739. doi: 10.1098/rspb.2001.1935

Craniotopic updating of visual space across saccades in the human posterior parietal cortex.

Paul van Donkelaar 1, René Müri 1
PMCID: PMC1690942  PMID: 11934366

Abstract

The neural mechanisms underlying the craniotopic updating of visual space across saccadic eye movements are poorly understood. Previous single-unit recording studies in primates and clinical studies in brain-damaged patients have shown that the posterior parietal cortex (PPC) has a key role in this process. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to disrupt the processing within the PPC during a task that requires craniotopic updating: double saccades. In this task, two targets are presented in quick succession and the subject is required to make a saccade to each location as accurately as possible. We show here that TMS delivered to the PPC just prior to the second saccade effectively disrupts the craniotopic coding normally observed in this task. This causes subjects to revert to saccades more consistent with a representation of the targets based on their positions relative to one another. By contrast, stimulation at earlier times between the two saccades did not disrupt performance. These results suggest that extraretinal information generated during the first perisaccadic period is not put into functional use until just prior to the second saccade.

Full Text

The Full Text of this article is available as a PDF (110.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen R. A. Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1421–1428. doi: 10.1098/rstb.1997.0128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behrmann M., Tipper S. P. Attention accesses multiple reference frames: evidence from visual neglect. J Exp Psychol Hum Percept Perform. 1999 Feb;25(1):83–101. doi: 10.1037//0096-1523.25.1.83. [DOI] [PubMed] [Google Scholar]
  3. Duhamel J. R., Colby C. L., Goldberg M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science. 1992 Jan 3;255(5040):90–92. doi: 10.1126/science.1553535. [DOI] [PubMed] [Google Scholar]
  4. Duhamel J. R., Goldberg M. E., Fitzgibbon E. J., Sirigu A., Grafman J. Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. Brain. 1992 Oct;115(Pt 5):1387–1402. doi: 10.1093/brain/115.5.1387. [DOI] [PubMed] [Google Scholar]
  5. Hallett P. E., Lightstone A. D. Saccadic eye movements to flashed targets. Vision Res. 1976 Jan;16(1):107–114. doi: 10.1016/0042-6989(76)90084-5. [DOI] [PubMed] [Google Scholar]
  6. Heide W., Binkofski F., Seitz R. J., Posse S., Nitschke M. F., Freund H. J., Kömpf D. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci. 2001 Mar;13(6):1177–1189. doi: 10.1046/j.0953-816x.2001.01472.x. [DOI] [PubMed] [Google Scholar]
  7. Heide W., Blankenburg M., Zimmermann E., Kömpf D. Cortical control of double-step saccades: implications for spatial orientation. Ann Neurol. 1995 Nov;38(5):739–748. doi: 10.1002/ana.410380508. [DOI] [PubMed] [Google Scholar]
  8. Li C. S., Andersen R. A. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task. Exp Brain Res. 2001 Mar;137(1):45–57. doi: 10.1007/s002210000546. [DOI] [PubMed] [Google Scholar]
  9. Müri R. M., Vermersch A. I., Rivaud S., Gaymard B., Pierrot-Deseilligny C. Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. J Neurophysiol. 1996 Sep;76(3):2102–2106. doi: 10.1152/jn.1996.76.3.2102. [DOI] [PubMed] [Google Scholar]
  10. Olson C. R. Object-based vision and attention in primates. Curr Opin Neurobiol. 2001 Apr;11(2):171–179. doi: 10.1016/s0959-4388(00)00193-8. [DOI] [PubMed] [Google Scholar]
  11. Pascual-Leone A., Bartres-Faz D., Keenan J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1229–1238. doi: 10.1098/rstb.1999.0476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Snyder L. H., Grieve K. L., Brotchie P., Andersen R. A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature. 1998 Aug 27;394(6696):887–891. doi: 10.1038/29777. [DOI] [PubMed] [Google Scholar]
  13. Terao Y., Fukuda H., Ugawa Y., Hikosaka O., Hanajima R., Furubayashi T., Sakai K., Miyauchi S., Sasaki Y., Kanazawa I. Visualization of the information flow through human oculomotor cortical regions by transcranial magnetic stimulation. J Neurophysiol. 1998 Aug;80(2):936–946. doi: 10.1152/jn.1998.80.2.936. [DOI] [PubMed] [Google Scholar]
  14. Tobler P. N., Felblinger J., Bürki M., Nirkko A. C., Ozdoba C., Müri R. M. Functional organisation of the saccadic reference system processing extraretinal signals in humans. Vision Res. 2001;41(10-11):1351–1358. doi: 10.1016/s0042-6989(00)00316-3. [DOI] [PubMed] [Google Scholar]
  15. Walsh V., Rushworth M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia. 1999 Feb;37(2):125–135. [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES