Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Apr 22;269(1493):761–772. doi: 10.1098/rspb.2001.1837

Clone mixtures and a pacemaker: new facets of Red-Queen theory and ecology.

A Sasaki 1, W D Hamilton 1, F Ubeda 1
PMCID: PMC1690956  PMID: 11958707

Abstract

Host-parasite antagonistic interaction has been proposed as a potential agent to promote genetic polymorphism and to favour sex against asex, despite its twofold cost in reproduction. However, the host-parasite gene-for-gene dynamics often produce unstable cycles that tend to destroy genetic diversity. Here, we examine such diversity destroying coevolutionary dynamics of host and parasite, which is coupled through local or global migration, or both, between demes in a metapopulation structure. We show that, with global migration in the island model, peculiar out-of-phase islands spontaneously arise in the cluster of islands converging to a global synchrony. Such asynchrony induced by the 'pacemaker islands' serves to restore genetic variation. With increasing fraction of local migration, spots of asynchrony are converted into loci or foci of spiral and target patterns, whose rotating arms then cover the majority of demes. A multi-locus analogue of the model reproduces the same tendency toward asynchrony, and the condition arises for an advantage of asexual clones over their sexual counterpart when enough genetic diversity is maintained through metapopulation storage-migration serves as a cheap alternative to sex.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caugant D. A., Levin B. R., Selander R. K. Genetic diversity and temporal variation in the E. coli population of a human host. Genetics. 1981 Jul;98(3):467–490. doi: 10.1093/genetics/98.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ebert D., Herre E. A. The evolution of parasitic diseases. Parasitol Today. 1996 Mar;12(3):96–101. doi: 10.1016/0169-4758(96)80668-5. [DOI] [PubMed] [Google Scholar]
  3. Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. Science. 1994 Aug 19;265(5175):1084–1086. doi: 10.1126/science.265.5175.1084. [DOI] [PubMed] [Google Scholar]
  4. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  5. Halvorsen O. Epidemiology of reindeer parasites. Parasitol Today. 1986 Dec;2(12):334–339. doi: 10.1016/0169-4758(86)90053-0. [DOI] [PubMed] [Google Scholar]
  6. Hamilton W. D., Axelrod R., Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. doi: 10.1073/pnas.87.9.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hauser L., Carvalho G. R., Hughes R. N., Carter R. E. Clonal structure of the introduced freshwater snail Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae), as revealed by DNA fingerprinting. Proc Biol Sci. 1992 Jul 22;249(1324):19–25. doi: 10.1098/rspb.1992.0078. [DOI] [PubMed] [Google Scholar]
  8. Hebert P. D. Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives. Experientia Suppl. 1987;55:175–195. doi: 10.1007/978-3-0348-6273-8_8. [DOI] [PubMed] [Google Scholar]
  9. Kirzhner V. M., Korol A. B., Nevo E. Complex limiting behaviour of multilocus genetic systems in cyclical environments. J Theor Biol. 1998 Feb 7;190(3):215–225. doi: 10.1006/jtbi.1997.0547. [DOI] [PubMed] [Google Scholar]
  10. Kunkel B. N. A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet. 1996 Feb;12(2):63–69. doi: 10.1016/0168-9525(96)81402-8. [DOI] [PubMed] [Google Scholar]
  11. Lively C. M., Dybdahl M. F. Parasite adaptation to locally common host genotypes. Nature. 2000 Jun 8;405(6787):679–681. doi: 10.1038/35015069. [DOI] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1997.0189. [DOI] [PMC free article] [Google Scholar]
  13. doi: 10.1098/rspb.1998.0549. [DOI] [PMC free article] [Google Scholar]
  14. Tibayrenc M., Kjellberg F., Arnaud J., Oury B., Brenière S. F., Dardé M. L., Ayala F. J. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5129–5133. doi: 10.1073/pnas.88.12.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. White A., Begon M., Bowers R. G. Host-pathogen systems in a spatially patchy environment. Proc Biol Sci. 1996 Mar 22;263(1368):325–332. doi: 10.1098/rspb.1996.0050. [DOI] [PubMed] [Google Scholar]
  16. Zeigler B. P. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. J Theor Biol. 1977 Aug 22;67(4):687–713. doi: 10.1016/0022-5193(77)90255-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES