Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Apr 22;269(1493):839–846. doi: 10.1098/rspb.2002.1961

Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds.

Tara Paton 1, Oliver Haddrath 1, Allan J Baker 1
PMCID: PMC1690957  PMID: 11958716

Abstract

To test the hypothesis put forward by Feduccia of the origin of modern birds from transitional birds, we sequenced the first two complete mitochondrial genomes of shorebirds (ruddy turnstone and blackish oystercatcher) and compared their sequences with those of already published avian genomes. When corrected for rate heterogeneity across sites and non-homogeneous nucleotide compositions among lineages in maximum likelihood (ML), the optimal tree places palaeognath birds as sister to the neognaths including shorebirds. This optimal topology is a re-rooting of recently published ordinal-level avian trees derived from mitochondrial sequences. Using a penalized likelihood (PL) rate-smoothing process in conjunction with dates estimated from fossils, we show that the basal splits in the bird tree are much older than the Cretaceous-Tertiary (K-T) boundary, reinforcing previous molecular studies that rejected the derivation of modern birds from transitional shorebirds. Our mean estimate for the origin of modern birds at about 123 million years ago (Myr ago) is quite close to recent estimates using both nuclear and mitochondrial genes, and supports theories of continental break-up as a driving force in avian diversification. Not only did many modern orders of birds originate well before the K-T boundary, but the radiation of major clades occurred over an extended period of at least 40 Myr ago, thus also falsifying Feduccia's rapid radiation scenario following a K-T bottleneck.

Full Text

The Full Text of this article is available as a PDF (125.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton M. J. Phylogeny of the major tetrapod groups: morphological data and divergence dates. J Mol Evol. 1990 May;30(5):409–424. doi: 10.1007/BF02101113. [DOI] [PubMed] [Google Scholar]
  2. Calam J., Unwin R., Peart W. S. Neurotensin stimulates defaecation. Lancet. 1983 Apr 2;1(8327):737–738. doi: 10.1016/s0140-6736(83)92028-7. [DOI] [PubMed] [Google Scholar]
  3. Cao Y., Adachi J., Janke A., Päbo S., Hasegawa M. Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol. 1994 Nov;39(5):519–527. doi: 10.1007/BF00173421. [DOI] [PubMed] [Google Scholar]
  4. Caspers G. J., Uit de Weerd D., Wattel J., de Jong W. W. alpha-Crystallin sequences support a galliform/anseriform clade. Mol Phylogenet Evol. 1997 Apr;7(2):185–188. doi: 10.1006/mpev.1996.0384. [DOI] [PubMed] [Google Scholar]
  5. Chang B. S., Campbell D. L. Bias in phylogenetic reconstruction of vertebrate rhodopsin sequences. Mol Biol Evol. 2000 Aug;17(8):1220–1231. doi: 10.1093/oxfordjournals.molbev.a026405. [DOI] [PubMed] [Google Scholar]
  6. Charleston M. A., Hendy M. D., Penny D. The effects of sequence length, tree topology, and number of taxa on the performance of phylogenetic methods. J Comput Biol. 1994 Summer;1(2):133–151. doi: 10.1089/cmb.1994.1.133. [DOI] [PubMed] [Google Scholar]
  7. Cooper A., Lalueza-Fox C., Anderson S., Rambaut A., Austin J., Ward R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001 Feb 8;409(6821):704–707. doi: 10.1038/35055536. [DOI] [PubMed] [Google Scholar]
  8. Cooper A., Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997 Feb 21;275(5303):1109–1113. doi: 10.1126/science.275.5303.1109. [DOI] [PubMed] [Google Scholar]
  9. Cracraft J. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc Biol Sci. 2001 Mar 7;268(1466):459–469. doi: 10.1098/rspb.2000.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cummings M. P., Otto S. P., Wakeley J. Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol. 1995 Sep;12(5):814–822. doi: 10.1093/oxfordjournals.molbev.a040258. [DOI] [PubMed] [Google Scholar]
  11. De Rijk P., Wuyts J., Van de Peer Y., Winkelmans T., De Wachter R. The European large subunit ribosomal RNA database. Nucleic Acids Res. 2000 Jan 1;28(1):177–178. doi: 10.1093/nar/28.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
  13. Eyre-Walker A. Problems with parsimony in sequences of biased base composition. J Mol Evol. 1998 Dec;47(6):686–690. doi: 10.1007/pl00006427. [DOI] [PubMed] [Google Scholar]
  14. Feduccia A. Explosive evolution in tertiary birds and mammals. Science. 1995 Feb 3;267(5198):637–638. doi: 10.1126/science.267.5198.637. [DOI] [PubMed] [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  16. Foster P. G., Hickey D. A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol. 1999 Mar;48(3):284–290. doi: 10.1007/pl00006471. [DOI] [PubMed] [Google Scholar]
  17. Galtier N., Gouy M. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol. 1998 Jul;15(7):871–879. doi: 10.1093/oxfordjournals.molbev.a025991. [DOI] [PubMed] [Google Scholar]
  18. Groth J. G., Barrowclough G. F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol. 1999 Jul;12(2):115–123. doi: 10.1006/mpev.1998.0603. [DOI] [PubMed] [Google Scholar]
  19. Haddrath O., Baker A. J. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc Biol Sci. 2001 May 7;268(1470):939–945. doi: 10.1098/rspb.2001.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hedges S. B., Parker P. H., Sibley C. G., Kumar S. Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996 May 16;381(6579):226–229. doi: 10.1038/381226a0. [DOI] [PubMed] [Google Scholar]
  21. Hillis D. M., Huelsenbeck J. P., Cunningham C. W. Application and accuracy of molecular phylogenies. Science. 1994 Apr 29;264(5159):671–677. doi: 10.1126/science.8171318. [DOI] [PubMed] [Google Scholar]
  22. Härlid A., Janke A., Arnason U. The complete mitochondrial genome of Rhea americana and early avian divergences. J Mol Evol. 1998 Jun;46(6):669–679. doi: 10.1007/pl00006347. [DOI] [PubMed] [Google Scholar]
  23. Härlid A., Janke A., Arnason U. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Mol Biol Evol. 1997 Jul;14(7):754–761. doi: 10.1093/oxfordjournals.molbev.a025815. [DOI] [PubMed] [Google Scholar]
  24. Johnson K. P. Taxon sampling and the phylogenetic position of Passeriformes: evidence from 916 avian cytochrome b sequences. Syst Biol. 2001 Feb;50(1):128–136. [PubMed] [Google Scholar]
  25. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  26. Kumar S. Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics. 1996 May;143(1):537–548. doi: 10.1093/genetics/143.1.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kumazawa Y., Nishida M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol. 1993 Oct;37(4):380–398. doi: 10.1007/BF00178868. [DOI] [PubMed] [Google Scholar]
  28. Mindell D. P., Sorenson M. D., Dimcheff D. E. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol. 1998 Nov;15(11):1568–1571. doi: 10.1093/oxfordjournals.molbev.a025884. [DOI] [PubMed] [Google Scholar]
  29. Mindell D. P., Sorenson M. D., Dimcheff D. E., Hasegawa M., Ast J. C., Yuri T. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol. 1999 Mar;48(1):138–152. doi: 10.1080/106351599260490. [DOI] [PubMed] [Google Scholar]
  30. Mooers AØ, Holmes EC. The evolution of base composition and phylogenetic inference. Trends Ecol Evol. 2000 Sep;15(9):365–369. doi: 10.1016/s0169-5347(00)01934-0. [DOI] [PubMed] [Google Scholar]
  31. Naylor G. J., Brown W. M. Structural biology and phylogenetic estimation. Nature. 1997 Aug 7;388(6642):527–528. doi: 10.1038/41460. [DOI] [PubMed] [Google Scholar]
  32. doi: 10.1098/rspb.1999.0638. [DOI] [PMC free article] [Google Scholar]
  33. Rambaut A., Bromham L. Estimating divergence dates from molecular sequences. Mol Biol Evol. 1998 Apr;15(4):442–448. doi: 10.1093/oxfordjournals.molbev.a025940. [DOI] [PubMed] [Google Scholar]
  34. Russo C. A., Takezaki N., Nei M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol Evol. 1996 Mar;13(3):525–536. doi: 10.1093/oxfordjournals.molbev.a025613. [DOI] [PubMed] [Google Scholar]
  35. Sanderson Michael J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002 Jan;19(1):101–109. doi: 10.1093/oxfordjournals.molbev.a003974. [DOI] [PubMed] [Google Scholar]
  36. Stapel S. O., Leunissen J. A., Versteeg M., Wattel J., de Jong W. W. Ratites as oldest offshoot of avian stem--evidence from alpha-crystallin A sequences. Nature. 1984 Sep 20;311(5983):257–259. doi: 10.1038/311257a0. [DOI] [PubMed] [Google Scholar]
  37. Takezaki N., Gojobori T. Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences. Mol Biol Evol. 1999 May;16(5):590–601. doi: 10.1093/oxfordjournals.molbev.a026141. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Van Tuinen M., Butvill D. B., Kirsch J. A., Hedges S. B. Convergence and divergence in the evolution of aquatic birds. Proc Biol Sci. 2001 Jul 7;268(1474):1345–1350. doi: 10.1098/rspb.2001.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Waddell P. J., Cao Y., Hasegawa M., Mindell D. P. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Syst Biol. 1999 Mar;48(1):119–137. doi: 10.1080/106351599260481. [DOI] [PubMed] [Google Scholar]
  41. Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol. 1996 Sep;13(7):933–942. doi: 10.1093/oxfordjournals.molbev.a025661. [DOI] [PubMed] [Google Scholar]
  42. de Boer L. E. Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature. 1980 Sep 4;287(5777):84–85. doi: 10.1038/287084a0. [DOI] [PubMed] [Google Scholar]
  43. van Tuinen M., Hedges S. B. Calibration of avian molecular clocks. Mol Biol Evol. 2001 Feb;18(2):206–213. doi: 10.1093/oxfordjournals.molbev.a003794. [DOI] [PubMed] [Google Scholar]
  44. van Tuinen M., Sibley C. G., Hedges S. B. Phylogeny and biogeography of ratite birds inferred from DNA sequences of the mitochondrial ribosomal genes. Mol Biol Evol. 1998 Apr;15(4):370–376. doi: 10.1093/oxfordjournals.molbev.a025933. [DOI] [PubMed] [Google Scholar]
  45. van Tuinen M., Sibley C. G., Hedges S. B. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Mol Biol Evol. 2000 Mar;17(3):451–457. doi: 10.1093/oxfordjournals.molbev.a026324. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES