Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Apr 22;269(1493):801–807. doi: 10.1098/rspb.2002.1960

Visualizing patterns of craniofacial shape variation in Homo sapiens.

Christoph P E Zollikofer 1, Marcia S Ponce De León 1
PMCID: PMC1690963  PMID: 11958711

Abstract

The geometric morphometric analysis of shape variation in complex biological structures such as the human skull poses a number of specific challenges: the registration of homologous morphologies, the treatment of bilateral symmetry, the graphical representation of form variability in three dimensions and the interpretation of the results in terms of differential growth processes. To visualize complex patterns of shape change, we propose an alternative to classical Cartesian deformation grids in the style of D'Arcy W. Thompson. Reference to the surface structures of the organism under investigation permits a comprehensive visual grasp of shape change and its tentative interpretation in terms of differential growth. The application of this method to the analysis of human craniofacial shape variation reveals distinct modes of growth and development of the neurocranial and viscerocranial regions of the skull. Our data further indicate that variations in the orientation of the viscerocranium relative to the neurocranium impinge on the shapes of the face and the cranial vault.

Full Text

The Full Text of this article is available as a PDF (281.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. C., Rohlf F. J. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4106–4111. doi: 10.1073/pnas.97.8.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andresen P. R., Bookstein F. L., Conradsen K., Ersbøll B. K., Marsh J. L., Kreiborg S. Surface-bounded growth modeling applied to human mandibles. IEEE Trans Med Imaging. 2000 Nov;19(11):1053–1063. doi: 10.1109/42.896780. [DOI] [PubMed] [Google Scholar]
  3. Andresen P. R., Nielsen M. Non-rigid registration by geometry-constrained diffusion. Med Image Anal. 2001 Jun;5(2):81–88. doi: 10.1016/s1361-8415(00)00036-0. [DOI] [PubMed] [Google Scholar]
  4. Bookstein F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal. 1997 Apr;1(3):225–243. doi: 10.1016/s1361-8415(97)85012-8. [DOI] [PubMed] [Google Scholar]
  5. Bookstein F., Schäfer K., Prossinger H., Seidler H., Fieder M., Stringer C., Weber G. W., Arsuaga J. L., Slice D. E., Rohlf F. J. Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anat Rec. 1999 Dec 15;257(6):217–224. doi: 10.1002/(SICI)1097-0185(19991215)257:6<217::AID-AR7>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  6. Cutting C., Dean D., Bookstein F. L., Haddad B., Khorramabadi D., Zonneveld F. W., McCarthy J. G. A three-dimensional smooth surface analysis of untreated Crouzon's syndrome in the adult. J Craniofac Surg. 1995 Nov;6(6):444–453. doi: 10.1097/00001665-199511000-00004. [DOI] [PubMed] [Google Scholar]
  7. Klingenberg C. P., McIntyre G. S., Zaklan S. D. Left-right asymmetry of fly wings and the evolution of body axes. Proc Biol Sci. 1998 Jul 7;265(1402):1255–1259. doi: 10.1098/rspb.1998.0427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lieberman D. E., Pearson O. M., Mowbray K. M. Basicranial influence on overall cranial shape. J Hum Evol. 2000 Feb;38(2):291–315. doi: 10.1006/jhev.1999.0335. [DOI] [PubMed] [Google Scholar]
  9. Lynch J. M., Wood C. G., Luboga S. A. Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes. Folia Primatol (Basel) 1996;67(1):15–39. doi: 10.1159/000157203. [DOI] [PubMed] [Google Scholar]
  10. MOSS M. L., YOUNG R. W. A functional approach to craniology. Am J Phys Anthropol. 1960 Dec;18:281–292. doi: 10.1002/ajpa.1330180406. [DOI] [PubMed] [Google Scholar]
  11. McCollum M. A. The robust australopithecine face: a morphogenetic perspective. Science. 1999 Apr 9;284(5412):301–305. doi: 10.1126/science.284.5412.301. [DOI] [PubMed] [Google Scholar]
  12. O'Higgins P., Jones N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J Anat. 1998 Aug;193(Pt 2):251–272. doi: 10.1046/j.1469-7580.1998.19320251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Higgins P. The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat. 2000 Jul;197(Pt 1):103–120. doi: 10.1046/j.1469-7580.2000.19710103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ponce de León M. S., Zollikofer C. P. Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature. 2001 Aug 2;412(6846):534–538. doi: 10.1038/35087573. [DOI] [PubMed] [Google Scholar]
  15. Rao C. R., Suryawanshi S. Statistical analysis of shape through triangulation of landmarks: A study of sexual dimorphism in hominids. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4121–4125. doi: 10.1073/pnas.95.8.4121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richtsmeier J. T., Lele S. A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biol Rev Camb Philos Soc. 1993 Aug;68(3):381–411. doi: 10.1111/j.1469-185x.1993.tb00737.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
11958711s01.pdf (183.4KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES