Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 7;269(1494):915–921. doi: 10.1098/rspb.2001.1942

A genus-level supertree of the Dinosauria.

Davide Pisani 1, Adam M Yates 1, Max C Langer 1, Michael J Benton 1
PMCID: PMC1690971  PMID: 12028774

Abstract

One of the ultimate aims of systematics is the reconstruction of the tree of life. This is a huge undertaking that is inhibited by the existence of a computational limit to the inclusiveness of phylogenetic analyses. Supertree methods have been developed to overcome, or at least to go around this problem by combining smaller, partially overlapping cladograms. Here, we present a very inclusive generic-level supertree of Dinosauria (covering a total of 277 genera), which is remarkably well resolved and provides some clarity in many contentious areas of dinosaur systematics.

Full Text

The Full Text of this article is available as a PDF (182.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bininda-Emonds O. R., Bryant H. N. Properties of matrix representation with parsimony analyses. Syst Biol. 1998 Sep;47(3):497–508. [PubMed] [Google Scholar]
  2. Bininda-Emonds O. R., Gittleman J. L., Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev Camb Philos Soc. 1999 May;74(2):143–175. doi: 10.1017/s0006323199005307. [DOI] [PubMed] [Google Scholar]
  3. Bininda-Emonds O. R., Sanderson M. J. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Syst Biol. 2001 Aug;50(4):565–579. [PubMed] [Google Scholar]
  4. Liu F. G., Miyamoto M. M., Freire N. P., Ong P. Q., Tennant M. R., Young T. S., Gugel K. F. Molecular and morphological supertrees for eutherian (placental) mammals. Science. 2001 Mar 2;291(5509):1786–1789. doi: 10.1126/science.1056346. [DOI] [PubMed] [Google Scholar]
  5. Mann C. Meta-analysis in the breech. Science. 1990 Aug 3;249(4968):476–480. doi: 10.1126/science.2382129. [DOI] [PubMed] [Google Scholar]
  6. Pisani Davide, Wilkinson Mark. Matrix representation with parsimony, taxonomic congruence, and total evidence. Syst Biol. 2002 Feb;51(1):151–155. doi: 10.1080/106351502753475925. [DOI] [PubMed] [Google Scholar]
  7. Purvis A. A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):405–421. doi: 10.1098/rstb.1995.0078. [DOI] [PubMed] [Google Scholar]
  8. Sereno P. C. The evolution of dinosaurs. Science. 1999 Jun 25;284(5423):2137–2147. doi: 10.1126/science.284.5423.2137. [DOI] [PubMed] [Google Scholar]
  9. Sereno P. C., Wilson J. A., Larsson H. C., Dutheil D. B., Sues H. D. Early cretaceous dinosaurs from the sahara. Science. 1994 Oct 14;266(5183):267–271. doi: 10.1126/science.266.5183.267. [DOI] [PubMed] [Google Scholar]
  10. Thorley J. L., Page R. D. RadCon: phylogenetic tree comparison and consensus. Bioinformatics. 2000 May;16(5):486–487. doi: 10.1093/bioinformatics/16.5.486. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12028774s01.pdf (1.3MB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES