Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 7;269(1494):893–904. doi: 10.1098/rspb.2002.1975

Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies.

Stefan Hiendleder 1, Bernhard Kaupe 1, Rudolf Wassmuth 1, Axel Janke 1
PMCID: PMC1690972  PMID: 12028771

Abstract

Complete mitochondrial DNA (mtDNA) control regions (CR) were sequenced and analysed in order to investigate wild sheep taxonomy and the origin of domestic sheep (Ovis aries). The dataset for phylogenetic analyses includes 63 unique CR sequences from wild sheep of the mouflon (O. musimon, O. orientalis), urial (O. vignei), argali (O. ammon) and bighorn (O. canadensis) groups, and from domestic sheep of Asia, Europe and New Zealand. Domestic sheep occurred in two clearly separated branches with mouflon (O. musimon) mixed into one of the domestic sheep clusters. Genetic distances and molecular datings based on O. canadensis CR and mtDNA protein-coding sequences provide strong evidence for domestications from two mouflon subspecies. Other wild sheep sequences are in two additional well-separated branches. Ovis ammon collium and O. ammon nigrimontana are joined with a specimen from the transkaspian Ust-Urt plateau currently named O. vignei arkal. Ovis ammon ammon, O. ammon darwini and O. vignei bochariensis represent a separate clade and the earliest divergence from the mouflon group. Therefore, O. musimon, O. vignei bochariensis and Ust-Urt sheep are not members of a 'moufloniform' or O. orientalis species, but belong to different clades. Furthermore, Ust-Urt sheep could be a hybrid population or an O. ammon subspecies closely related to O. ammon nigrimontana.

Full Text

The Full Text of this article is available as a PDF (212.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  2. Arnason U., Gullberg A. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol. 1993 Oct;37(4):312–322. doi: 10.1007/BF00178861. [DOI] [PubMed] [Google Scholar]
  3. Arnason U., Gullberg A. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol. 1996 Feb;13(2):407–417. doi: 10.1093/oxfordjournals.molbev.a025599. [DOI] [PubMed] [Google Scholar]
  4. Arnason U., Gullberg A., Gretarsdottir S., Ursing B., Janke A. The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J Mol Evol. 2000 Jun;50(6):569–578. doi: 10.1007/s002390010060. [DOI] [PubMed] [Google Scholar]
  5. Arnason U., Gullberg A., Johnsson E., Ledje C. The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol. 1993 Oct;37(4):323–330. doi: 10.1007/BF00178862. [DOI] [PubMed] [Google Scholar]
  6. Arnason U., Xu X., Gullberg A. Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. J Mol Evol. 1996 Feb;42(2):145–152. doi: 10.1007/BF02198840. [DOI] [PubMed] [Google Scholar]
  7. Avise J. C., Walker D., Johns G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc Biol Sci. 1998 Sep 22;265(1407):1707–1712. doi: 10.1098/rspb.1998.0492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradley D. G., MacHugh D. E., Cunningham P., Loftus R. T. Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5131–5135. doi: 10.1073/pnas.93.10.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bunch T. D., Vorontsov N. N., Lyapunova E. A., Hoffmann R. S. Chromosome number of Severtzov's sheep (Ovis ammon severtzovi): G-banded karyotype comparisons within ovis. J Hered. 1998 May-Jun;89(3):266–269. doi: 10.1093/jhered/89.3.266. [DOI] [PubMed] [Google Scholar]
  10. Giuffra E., Kijas J. M., Amarger V., Carlborg O., Jeon J. T., Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics. 2000 Apr;154(4):1785–1791. doi: 10.1093/genetics/154.4.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Groves P., Shields G. F. Phylogenetics of the Caprinae based on cytochrome b sequence. Mol Phylogenet Evol. 1996 Jun;5(3):467–476. doi: 10.1006/mpev.1996.0043. [DOI] [PubMed] [Google Scholar]
  12. Hiendleder S., Lewalski H., Wassmuth R., Janke A. The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J Mol Evol. 1998 Oct;47(4):441–448. doi: 10.1007/pl00006401. [DOI] [PubMed] [Google Scholar]
  13. Hiendleder S., Mainz K., Plante Y., Lewalski H. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep. J Hered. 1998 Mar-Apr;89(2):113–120. doi: 10.1093/jhered/89.2.113. [DOI] [PubMed] [Google Scholar]
  14. Hiendleder S., Phua S. H., Hecht W. A diagnostic assay discriminating between two major Ovis aries mitochondrial DNA haplogroups. Anim Genet. 1999 Jun;30(3):211–213. doi: 10.1046/j.1365-2052.1999.00455.x. [DOI] [PubMed] [Google Scholar]
  15. Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M., Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Luikart G., Gielly L., Excoffier L., Vigne J. D., Bouvet J., Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5927–5932. doi: 10.1073/pnas.091591198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacHugh D. E., Bradley D. G. Livestock genetic origins: goats buck the trend. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5382–5384. doi: 10.1073/pnas.111163198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nadler C. F., Hoffmann R. S., Woolf A. G-band patterns as chromosomal markers, and the interpretation of chromosomal evolution in wild sheep (Ovis). Experientia. 1973 May 1;29(1):117–119. doi: 10.1007/BF01913288. [DOI] [PubMed] [Google Scholar]
  19. Nadler C. F., Lay D. M., Hassinger J. D. Cytogenetic analyses of wild sheep populations in northern Iran. Cytogenetics. 1971;10(2):137–152. doi: 10.1159/000130135. [DOI] [PubMed] [Google Scholar]
  20. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  21. Takada T., Kikkawa Y., Yonekawa H., Kawakami S., Amano T. Bezoar (Capra aegagrus) is a matriarchal candidate for ancestor of domestic goat (Capra hircus): evidence from the mitochondrial DNA diversity. Biochem Genet. 1997 Oct;35(9-10):315–326. doi: 10.1023/a:1021869704889. [DOI] [PubMed] [Google Scholar]
  22. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  23. Troy C. S., MacHugh D. E., Bailey J. F., Magee D. A., Loftus R. T., Cunningham P., Chamberlain A. T., Sykes B. C., Bradley D. G. Genetic evidence for Near-Eastern origins of European cattle. Nature. 2001 Apr 26;410(6832):1088–1091. doi: 10.1038/35074088. [DOI] [PubMed] [Google Scholar]
  24. Tsuda K., Kikkawa Y., Yonekawa H., Tanabe Y. Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs: evidence from inter- and intraspecies polymorphisms in the D-loop region of mitochondrial DNA between dogs and wolves. Genes Genet Syst. 1997 Aug;72(4):229–238. doi: 10.1266/ggs.72.229. [DOI] [PubMed] [Google Scholar]
  25. Ursing B. M., Arnason U. Analyses of mitochondrial genomes strongly support a hippopotamus-whale clade. Proc Biol Sci. 1998 Dec 7;265(1412):2251–2255. doi: 10.1098/rspb.1998.0567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ursing B. M., Arnason U. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol. 1998 Sep;47(3):302–306. doi: 10.1007/pl00006388. [DOI] [PubMed] [Google Scholar]
  27. Vilà C., Leonard J. A., Gotherstrom A., Marklund S., Sandberg K., Liden K., Wayne R. K., Ellegren H. Widespread origins of domestic horse lineages. Science. 2001 Jan 19;291(5503):474–477. doi: 10.1126/science.291.5503.474. [DOI] [PubMed] [Google Scholar]
  28. Vilà C., Savolainen P., Maldonado J. E., Amorim I. R., Rice J. E., Honeycutt R. L., Crandall K. A., Lundeberg J., Wayne R. K. Multiple and ancient origins of the domestic dog. Science. 1997 Jun 13;276(5319):1687–1689. doi: 10.1126/science.276.5319.1687. [DOI] [PubMed] [Google Scholar]
  29. Wood N. J., Phua S. H. Variation in the control region sequence of the sheep mitochondrial genome. Anim Genet. 1996 Feb;27(1):25–33. doi: 10.1111/j.1365-2052.1996.tb01173.x. [DOI] [PubMed] [Google Scholar]
  30. Xu X., Arnason U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene. 1994 Oct 21;148(2):357–362. doi: 10.1016/0378-1119(94)90713-7. [DOI] [PubMed] [Google Scholar]
  31. Xu X., Gullberg A., Arnason U. The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J Mol Evol. 1996 Nov;43(5):438–446. doi: 10.1007/BF02337515. [DOI] [PubMed] [Google Scholar]
  32. Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994 Jul;39(1):105–111. doi: 10.1007/BF00178256. [DOI] [PubMed] [Google Scholar]
  33. Zardoya R., Villalta M., López-Pérez M. J., Garrido-Pertierra A., Montoya J., Bautista J. M. Nucleotide sequence of the sheep mitochondrial DNA D-loop and its flanking tRNA genes. Curr Genet. 1995 Jun;28(1):94–96. doi: 10.1007/BF00311887. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES