Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 7;269(1494):961–967. doi: 10.1098/rspb.2002.1967

Coevolving avian eye size and brain size in relation to prey capture and nocturnality.

László Zsolt Garamszegi 1, Anders Pape Møller 1, Johannes Erritzøe 1
PMCID: PMC1690973  PMID: 12028780

Abstract

Behavioural adaptation to ecological conditions can lead to brain size evolution. Structures involved in behavioural visual information processing are expected to coevolve with enlargement of the brain. Because birds are mainly vision-oriented animals, we tested the predictions that adaptation to different foraging constraints can result in eye size evolution, and that species with large eyes have evolved large brains to cope with the increased amount of visual input. Using a comparative approach, we investigated the relationship between eye size and brain size, and the effect of prey capture technique and nocturnality on these traits. After controlling for allometric effects, there was a significant, positive correlation between relative brain size and relative eye size. Variation in relative eye and brain size were significantly and positively related to prey capture technique and nocturnality when a potentially confounding variable, aquatic feeding, was controlled statistically in multiple regression of independent linear contrasts. Applying a less robust, brunching approach, these patterns also emerged, with the exception that relative brain size did not vary with prey capture technique. Our findings suggest that relative eye size and brain size have coevolved in birds in response to nocturnal activity and, at least partly, to capture of mobile prey.

Full Text

The Full Text of this article is available as a PDF (311.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton R. A. Neocortex size and behavioural ecology in primates. Proc Biol Sci. 1996 Feb 22;263(1367):173–177. doi: 10.1098/rspb.1996.0028. [DOI] [PubMed] [Google Scholar]
  2. Barton R. A., Purvis A., Harvey P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B Biol Sci. 1995 Jun 29;348(1326):381–392. doi: 10.1098/rstb.1995.0076. [DOI] [PubMed] [Google Scholar]
  3. Barton R. A. Visual specialization and brain evolution in primates. Proc Biol Sci. 1998 Oct 22;265(1409):1933–1937. doi: 10.1098/rspb.1998.0523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deaner R. O., Nunn C. L. How quickly do brains catch up with bodies? A comparative method for detecting evolutionary lag. Proc Biol Sci. 1999 Apr 7;266(1420):687–694. doi: 10.1098/rspb.1999.0690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gittleman J. L. Female brain size and parental care in carnivores. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5495–5497. doi: 10.1073/pnas.91.12.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harvey P. H., Krebs J. R. Comparing brains. Science. 1990 Jul 13;249(4965):140–146. doi: 10.1126/science.2196673. [DOI] [PubMed] [Google Scholar]
  7. Hodos W., Smith L., Bonbright J. C., Jr Detection of the velocity of movement of visual stimuli by pigeons? J Exp Anal Behav. 1976 Mar;25(2):143–156. doi: 10.1901/jeab.1976.25-143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karten H. J., Hodos W., Nauta W. J., Revzin A. M. Neural connections of the "visual wulst" of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol. 1973 Aug;150(3):253–278. doi: 10.1002/cne.901500303. [DOI] [PubMed] [Google Scholar]
  9. Maldonado P. E., Maturana H., Varela F. J. Frontal and lateral visual system in birds. Frontal and lateral gaze. Brain Behav Evol. 1988;32(1):57–62. doi: 10.1159/000116532. [DOI] [PubMed] [Google Scholar]
  10. Martin G. R., Young S. R. The eye of the humboldt penguin, Spheniscus humboldti: visual fields and schematic optics. Proc R Soc Lond B Biol Sci. 1984 Dec 22;223(1231):197–222. doi: 10.1098/rspb.1984.0090. [DOI] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1998.0345. [DOI] [PMC free article] [Google Scholar]
  12. doi: 10.1098/rspb.1999.0652. [DOI] [PMC free article] [Google Scholar]
  13. Pettigrew J. D. Binocular visual processing in the owl's telencephalon. Proc R Soc Lond B Biol Sci. 1979 Jun 4;204(1157):435–454. doi: 10.2196/49307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
  15. Snyder A. W., Miller W. H. Telephoto lens system of falconiform eyes. Nature. 1978 Sep 14;275(5676):127–129. doi: 10.1038/275127a0. [DOI] [PubMed] [Google Scholar]
  16. Székely T., Reynolds J. D., Figuerola J. Sexual size dimorphism in shorebirds, gulls, and alcids: the influence of sexual and natural selection. Evolution. 2000 Aug;54(4):1404–1413. doi: 10.1111/j.0014-3820.2000.tb00572.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12028780s01.pdf (125.1KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES