Abstract
The evolution of cis-regulatory elements (or enhancers) appears to proceed at dramatically different rates in different taxa. Vertebrate enhancers are often very highly conserved in their sequences, and relative positions, across distantly related taxa. In contrast, functionally equivalent enhancers in closely related Drosophila species can differ greatly in their sequences and spatial organization. We present a population-genetic model to explain this difference. The model examines the dynamics of fixation of pairs of individually deleterious, but compensating, mutations. As expected, small populations are predicted to have a high rate of evolution, and the rate decreases with increasing population size. In contrast to previous models, however, this model predicts that the rate of evolution by pairs of compensatory mutations increases dramatically for population sizes above several thousand individuals, to the point of greatly exceeding the neutral rate. Application of this model predicts that species with moderate population sizes will have relatively conserved enhancers, whereas species with larger populations will be expected to evolve their enhancers at much higher rates. We propose that the different degree of conservation seen in vertebrate and Drosophila enhancers may be explained solely by differences in their population sizes and generation times.
Full Text
The Full Text of this article is available as a PDF (295.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aparicio S., Morrison A., Gould A., Gilthorpe J., Chaudhuri C., Rigby P., Krumlauf R., Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1684–1688. doi: 10.1073/pnas.92.5.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
- Christiansen F. B., Otto S. P., Bergman A., Feldman M. W. Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol. 1998 Jun;53(3):199–215. doi: 10.1006/tpbi.1997.1358. [DOI] [PubMed] [Google Scholar]
- Gillespie J. H. The neutral theory in an infinite population. Gene. 2000 Dec 30;261(1):11–18. doi: 10.1016/s0378-1119(00)00485-6. [DOI] [PubMed] [Google Scholar]
- Gillespie J. H. The role of population size in molecular evolution. Theor Popul Biol. 1999 Apr;55(2):145–156. doi: 10.1006/tpbi.1998.1391. [DOI] [PubMed] [Google Scholar]
- Gumucio D. L., Shelton D. A., Bailey W. J., Slightom J. L., Goodman M. Phylogenetic footprinting reveals unexpected complexity in trans factor binding upstream from the epsilon-globin gene. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6018–6022. doi: 10.1073/pnas.90.13.6018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock J. M., Shaw P. J., Bonneton F., Dover G. A. High sequence turnover in the regulatory regions of the developmental gene hunchback in insects. Mol Biol Evol. 1999 Feb;16(2):253–265. doi: 10.1093/oxfordjournals.molbev.a026107. [DOI] [PubMed] [Google Scholar]
- Hansen T. F., Carter A. J., Chiu C. H. Gene conversion may aid adaptive peak shifts. J Theor Biol. 2000 Dec 21;207(4):495–511. doi: 10.1006/jtbi.2000.2189. [DOI] [PubMed] [Google Scholar]
- Hardison R., Slightom J. L., Gumucio D. L., Goodman M., Stojanovic N., Miller W. Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene. 1997 Dec 31;205(1-2):73–94. doi: 10.1016/s0378-1119(97)00474-5. [DOI] [PubMed] [Google Scholar]
- Innan H., Stephan W. Selection intensity against deleterious mutations in RNA secondary structures and rate of compensatory nucleotide substitutions. Genetics. 2001 Sep;159(1):389–399. doi: 10.1093/genetics/159.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. doi: 10.1093/genetics/47.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrashov A. S. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J Theor Biol. 1995 Aug 21;175(4):583–594. doi: 10.1006/jtbi.1995.0167. [DOI] [PubMed] [Google Scholar]
- Li W. H., Nei M. Total number of individuals affected by a single deleterious mutation in a finite population. Am J Hum Genet. 1972 Nov;24(6 Pt 1):667–679. [PMC free article] [PubMed] [Google Scholar]
- Liu T., Wu J., He F. Evolution of cis-acting elements in 5' flanking regions of vertebrate actin genes. J Mol Evol. 2000 Jan;50(1):22–30. doi: 10.1007/s002399910003. [DOI] [PubMed] [Google Scholar]
- Ludwig M. Z., Bergman C., Patel N. H., Kreitman M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature. 2000 Feb 3;403(6769):564–567. doi: 10.1038/35000615. [DOI] [PubMed] [Google Scholar]
- Ludwig M. Z., Patel N. H., Kreitman M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development. 1998 Mar;125(5):949–958. doi: 10.1242/dev.125.5.949. [DOI] [PubMed] [Google Scholar]
- Margarit E., Guillén A., Rebordosa C., Vidal-Taboada J., Sánchez M., Ballesta F., Oliva R. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem Biophys Res Commun. 1998 Apr 17;245(2):370–377. doi: 10.1006/bbrc.1998.8441. [DOI] [PubMed] [Google Scholar]
- Ohta T., Tachida H. Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics. 1990 Sep;126(1):219–229. doi: 10.1093/genetics/126.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsch J., Tanda S., Stephan W. Site-directed mutations reveal long-range compensatory interactions in the Adh gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):928–933. doi: 10.1073/pnas.94.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plaza S., Saule S., Dozier C. High conservation of cis-regulatory elements between quail and human for the Pax-6 gene. Dev Genes Evol. 1999 Mar;209(3):165–173. doi: 10.1007/s004270050240. [DOI] [PubMed] [Google Scholar]
- Ross J. L., Fong P. P., Cavener D. R. Correlated evolution of the cis-acting regulatory elements and developmental expression of the Drosophila Gld gene in seven species from the subgroup melanogaster. Dev Genet. 1994;15(1):38–50. doi: 10.1002/dvg.1020150106. [DOI] [PubMed] [Google Scholar]
- Stephan W. The rate of compensatory evolution. Genetics. 1996 Sep;144(1):419–426. doi: 10.1093/genetics/144.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. L. Evolutionary developmental biology and the problem of variation. Evolution. 2000 Aug;54(4):1079–1091. doi: 10.1111/j.0014-3820.2000.tb00544.x. [DOI] [PubMed] [Google Scholar]
- Stone J. R., Wray G. A. Rapid evolution of cis-regulatory sequences via local point mutations. Mol Biol Evol. 2001 Sep;18(9):1764–1770. doi: 10.1093/oxfordjournals.molbev.a003964. [DOI] [PubMed] [Google Scholar]
- Sumiyama K., Kim C. B., Ruddle F. H. An efficient cis-element discovery method using multiple sequence comparisons based on evolutionary relationships. Genomics. 2001 Jan 15;71(2):260–262. doi: 10.1006/geno.2000.6422. [DOI] [PubMed] [Google Scholar]
- Tagle D. A., Koop B. F., Goodman M., Slightom J. L., Hess D. L., Jones R. T. Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol. 1988 Sep 20;203(2):439–455. doi: 10.1016/0022-2836(88)90011-3. [DOI] [PubMed] [Google Scholar]
- Takahashi H., Mitani Y., Satoh G., Satoh N. Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development. 1999 Sep;126(17):3725–3734. doi: 10.1242/dev.126.17.3725. [DOI] [PubMed] [Google Scholar]
- Tamarina N. A., Ludwig M. Z., Richmond R. C. Divergent and conserved features in the spatial expression of the Drosophila pseudoobscura esterase-5B gene and the esterase-6 gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7735–7741. doi: 10.1073/pnas.94.15.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
