Abstract
The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management.
Full Text
The Full Text of this article is available as a PDF (394.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. F., Andreadis T. G., Vossbrinck C. R., Tirrell S., Wakem E. M., French R. A., Garmendia A. E., Van Kruiningen H. J. Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut. Science. 1999 Dec 17;286(5448):2331–2333. doi: 10.1126/science.286.5448.2331. [DOI] [PubMed] [Google Scholar]
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R. T. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc Biol Sci. 2000 Aug 7;267(1452):1583–1589. doi: 10.1098/rspb.2000.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daszak P., Cunningham A. A., Hyatt A. D. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science. 2000 Jan 21;287(5452):443–449. doi: 10.1126/science.287.5452.443. [DOI] [PubMed] [Google Scholar]
- Escalante A. A., Barrio E., Ayala F. J. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol. 1995 Jul;12(4):616–626. doi: 10.1093/oxfordjournals.molbev.a040241. [DOI] [PubMed] [Google Scholar]
- Escalante A. A., Freeland D. E., Collins W. E., Lal A. A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8124–8129. doi: 10.1073/pnas.95.14.8124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feagin J. E. The extrachromosomal DNAs of apicomplexan parasites. Annu Rev Microbiol. 1994;48:81–104. doi: 10.1146/annurev.mi.48.100194.000501. [DOI] [PubMed] [Google Scholar]
- Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
- Hafner M. S., Sudman P. D., Villablanca F. X., Spradling T. A., Demastes J. W., Nadler S. A. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science. 1994 Aug 19;265(5175):1087–1090. doi: 10.1126/science.8066445. [DOI] [PubMed] [Google Scholar]
- Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B., Scherret J. H. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999 Dec 17;286(5448):2333–2337. doi: 10.1126/science.286.5448.2333. [DOI] [PubMed] [Google Scholar]
- Page R. D., Lee P. L., Becher S. A., Griffiths R., Clayton D. H. A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. Mol Phylogenet Evol. 1998 Apr;9(2):276–293. doi: 10.1006/mpev.1997.0458. [DOI] [PubMed] [Google Scholar]
- Paterson A. M., Wallis G. P., Wallis L. J., Gray R. D. Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst Biol. 2000 Sep;49(3):383–399. doi: 10.1080/10635159950127303. [DOI] [PubMed] [Google Scholar]
- Perkins S. L. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium. Proc Biol Sci. 2000 Nov 22;267(1459):2345–2350. doi: 10.1098/rspb.2000.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiser P. R., Wilson R. J., Moore P. W., McCready S., Hajibagheri M. A., Blight K. J., Strath M., Williamson D. H. Recombination associated with replication of malarial mitochondrial DNA. EMBO J. 1996 Feb 1;15(3):684–693. [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.