Abstract
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.
Full Text
The Full Text of this article is available as a PDF (122.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. J., Drasdo N., Thompson C. M. Parvocellular neurons limit motion acuity in human peripheral vision. Proc Biol Sci. 1995 Jul 22;261(1360):129–138. doi: 10.1098/rspb.1995.0127. [DOI] [PubMed] [Google Scholar]
- Anderson S. J. Visual processing delays alter the perceived spatial form of moving gratings. Vision Res. 1993 Dec;33(18):2733–2746. doi: 10.1016/0042-6989(93)90232-l. [DOI] [PubMed] [Google Scholar]
- Cavanagh P., Anstis S. The contribution of color to motion in normal and color-deficient observers. Vision Res. 1991;31(12):2109–2148. doi: 10.1016/0042-6989(91)90169-6. [DOI] [PubMed] [Google Scholar]
- Cavanagh P., Favreau O. E. Color and luminance share a common motion pathway. Vision Res. 1985;25(11):1595–1601. doi: 10.1016/0042-6989(85)90129-4. [DOI] [PubMed] [Google Scholar]
- Cavanagh P., Tyler C. W., Favreau O. E. Perceived velocity of moving chromatic gratings. J Opt Soc Am A. 1984 Aug;1(8):893–899. doi: 10.1364/josaa.1.000893. [DOI] [PubMed] [Google Scholar]
- Cropper S. J., Derrington A. M. Rapid colour-specific detection of motion in human vision. Nature. 1996 Jan 4;379(6560):72–74. doi: 10.1038/379072a0. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Badcock D. R. The low level motion system has both chromatic and luminance inputs. Vision Res. 1985;25(12):1879–1884. doi: 10.1016/0042-6989(85)90011-2. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Lennie P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol. 1984 Dec;357:219–240. doi: 10.1113/jphysiol.1984.sp015498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobkins K. R., Albright T. D. What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors. Vision Res. 1993 May;33(8):1019–1036. doi: 10.1016/0042-6989(93)90238-r. [DOI] [PubMed] [Google Scholar]
- Dobkins K. R., Albright T. D. What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. J Neurosci. 1994 Aug;14(8):4854–4870. doi: 10.1523/JNEUROSCI.14-08-04854.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrera V. P., Nealey T. A., Maunsell J. H. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci. 1994 Apr;14(4):2080–2088. doi: 10.1523/JNEUROSCI.14-04-02080.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flitcroft D. I. The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry. Vision Res. 1989;29(3):349–360. doi: 10.1016/0042-6989(89)90083-7. [DOI] [PubMed] [Google Scholar]
- Galvin S. J., Williams D. R., Coletta N. J. The spatial grain of motion perception in human peripheral vision. Vision Res. 1996 Aug;36(15):2283–2295. doi: 10.1016/0042-6989(95)00291-x. [DOI] [PubMed] [Google Scholar]
- Gegenfurtner K. R., Kiper D. C., Beusmans J. M., Carandini M., Zaidi Q., Movshon J. A. Chromatic properties of neurons in macaque MT. Vis Neurosci. 1994 May-Jun;11(3):455–466. doi: 10.1017/s095252380000239x. [DOI] [PubMed] [Google Scholar]
- Ingling C. R., Jr, Martinez-Uriegas E. The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Res. 1983;23(12):1495–1500. doi: 10.1016/0042-6989(83)90161-x. [DOI] [PubMed] [Google Scholar]
- Lee B. B., Martin P. R., Valberg A. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. J Physiol. 1989 Jul;414:223–243. doi: 10.1113/jphysiol.1989.sp017685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livingstone M., Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988 May 6;240(4853):740–749. doi: 10.1126/science.3283936. [DOI] [PubMed] [Google Scholar]
- Maunsell J. H., Van Essen D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol. 1983 May;49(5):1148–1167. doi: 10.1152/jn.1983.49.5.1148. [DOI] [PubMed] [Google Scholar]
- Merigan W. H., Maunsell J. H. Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci. 1990 Oct;5(4):347–352. doi: 10.1017/s0952523800000432. [DOI] [PubMed] [Google Scholar]
- Mullen K. T., Baker C. L., Jr A motion aftereffect from an isoluminant stimulus. Vision Res. 1985;25(5):685–688. doi: 10.1016/0042-6989(85)90174-9. [DOI] [PubMed] [Google Scholar]
- Mullen K. T. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J Physiol. 1985 Feb;359:381–400. doi: 10.1113/jphysiol.1985.sp015591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantle A., Sekuler R. Contrast response of human visual mechanismsensitive to orientation and direction of motion. Vision Res. 1969 Mar;9(3):397–406. doi: 10.1016/0042-6989(69)90087-x. [DOI] [PubMed] [Google Scholar]
- Saito H., Tanaka K., Isono H., Yasuda M., Mikami A. Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp Brain Res. 1989;75(1):1–14. doi: 10.1007/BF00248524. [DOI] [PubMed] [Google Scholar]
- Stromeyer C. F., 3rd, Kronauer R. E., Ryu A., Chaparro A., Eskew R. T., Jr Contributions of human long-wave and middle-wave cones to motion detection. J Physiol. 1995 May 15;485(Pt 1):221–243. doi: 10.1113/jphysiol.1995.sp020726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorell L. G., De Valois R. L., Albrecht D. G. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 1984;24(7):751–769. doi: 10.1016/0042-6989(84)90216-5. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]
- Willis A., Anderson S. J. Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets. Proc Biol Sci. 1998 Dec 22;265(1413):2435–2441. doi: 10.1098/rspb.1998.0595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshizawa T., Mullen K. T., Baker C. L., Jr Absence of a chromatic linear motion mechanism in human vision. Vision Res. 2000;40(15):1993–2010. doi: 10.1016/s0042-6989(00)00069-9. [DOI] [PubMed] [Google Scholar]