Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 22;269(1495):1073–1078. doi: 10.1098/rspb.2002.1963

Rapid spread of immigrant genomes into inbred populations.

Ilik J Saccheri 1, Paul M Brakefield 1
PMCID: PMC1690988  PMID: 12028766

Abstract

When local populations are genetically differentiated from one another and partially inbred, as typically occurs in subdivided populations, immigrant genomes are predicted to be at a frequency-dependent fitness advantage due to heterosis (hybrid vigour) in their descendants. We tested this prediction with pedigreed laboratory populations of the butterfly Bicyclus anynana and report here on a rapid increase over five generations in the contribution of an initially rare immigrant genome to the local population gene pool. The replicated experimental design, including immigrant controls, demonstrates that the mechanism underlying immigrant genome spread is heterosis, and that the advantage to the immigrant genes is sustained over several generations. Our result suggests that effective migration rates may often be much higher than the numbers of individual migrants assumed by classical population genetics models, with implications for the persistence and evolution of metapopulations.

Full Text

The Full Text of this article is available as a PDF (126.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W., Wilmer J. W., Fullard K., Burg T. M., Croxall J. P., Bloch D., Coulson T. The influence of parental relatedness on reproductive success. Proc Biol Sci. 2001 Oct 7;268(1480):2021–2027. doi: 10.1098/rspb.2001.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball S. J., Adams M., Possingham H. P., Keller M. A. The genetic contribution of single male immigrants to small, inbred populations: a laboratory study using Drosophila melanogaster. Heredity (Edinb) 2000 Jun;84(Pt 6):677–684. doi: 10.1046/j.1365-2540.2000.00721.x. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
  4. Crnokrak P., Roff D. A. Inbreeding depression in the wild. Heredity (Edinb) 1999 Sep;83(Pt 3):260–270. doi: 10.1038/sj.hdy.6885530. [DOI] [PubMed] [Google Scholar]
  5. Dallas J. F., Dod B., Boursot P., Prager E. M., Bonhomme F. Population subdivision and gene flow in Danish house mice. Mol Ecol. 1995 Jun;4(3):311–320. doi: 10.1111/j.1365-294x.1995.tb00224.x. [DOI] [PubMed] [Google Scholar]
  6. Ebert Dieter, Haag Christoph, Kirkpatrick Mark, Riek Myriam, Hottinger Jurgen W., Pajunen V. Ilmari. A selective advantage to immigrant genes in a Daphnia metapopulation. Science. 2002 Jan 18;295(5554):485–488. doi: 10.1126/science.1067485. [DOI] [PubMed] [Google Scholar]
  7. Hedrick P. W. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity (Edinb) 1994 Oct;73(Pt 4):363–372. doi: 10.1038/hdy.1994.183. [DOI] [PubMed] [Google Scholar]
  8. Ingvarsson P. K., Whitlock M. C. Heterosis increases the effective migration rate. Proc Biol Sci. 2000 Jul 7;267(1450):1321–1326. doi: 10.1098/rspb.2000.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ives Anthony R., Whitlock Michael C. Ecology. Inbreeding and metapopulations. Science. 2002 Jan 18;295(5554):454–455. doi: 10.1126/science.1068916. [DOI] [PubMed] [Google Scholar]
  10. Jones C. S., Noble L. R., Jones J. S., Tegelström H., Triggs G. S., Berry R. J. Differential male genetic success determines gene flow in an experimentally manipulated mouse population. Proc Biol Sci. 1995 Jun 22;260(1359):251–256. doi: 10.1098/rspb.1995.0088. [DOI] [PubMed] [Google Scholar]
  11. Keller L. F., Jeffery K. J., Arcese P., Beaumont M. A., Hochachka W. M., Smith J. N., Bruford M. W. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc Biol Sci. 2001 Jul 7;268(1474):1387–1394. doi: 10.1098/rspb.2001.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meagher S., Penn D. J., Potts W. K. Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3324–3329. doi: 10.1073/pnas.060284797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Richards CM. Inbreeding Depression and Genetic Rescue in a Plant Metapopulation. Am Nat. 2000 Mar;155(3):383–394. doi: 10.1086/303324. [DOI] [PubMed] [Google Scholar]
  14. Rossiter S. J., Jones G., Ransome R. D., Barratt E. M. Outbreeding increases offspring survival in wild greater horseshoe bats (Rhinolophus ferrumequinum). Proc Biol Sci. 2001 May 22;268(1471):1055–1061. doi: 10.1098/rspb.2001.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slate J., Kruuk L. E., Marshall T. C., Pemberton J. M., Clutton-Brock T. H. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc Biol Sci. 2000 Aug 22;267(1453):1657–1662. doi: 10.1098/rspb.2000.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  17. Whitlock M. C., Ingvarsson P. K., Hatfield T. Local drift load and the heterosis of interconnected populations. Heredity (Edinb) 2000 Apr;84(Pt 4):452–457. doi: 10.1046/j.1365-2540.2000.00693.x. [DOI] [PubMed] [Google Scholar]
  18. van Oosterhout C., Zijlstra W. G., van Heuven M. K., Brakefield P. M. Inbreeding depression and genetic load in laboratory metapopulations of the butterfly Bicyclus anynana. Evolution. 2000 Feb;54(1):218–225. doi: 10.1111/j.0014-3820.2000.tb00022.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES