Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 22;269(1495):1059–1066. doi: 10.1098/rspb.2001.1951

Is cell-mediated immunity related to the evolution of life-history strategies in birds?

José L Tella 1, Alex Scheuerlein 1, Robert E Ricklefs 1
PMCID: PMC1690995  PMID: 12028764

Abstract

According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds.

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng S., Rothschild M. F., Lamont S. J. Estimates of quantitative genetic parameters of immunological traits in the chicken. Poult Sci. 1991 Oct;70(10):2023–2027. doi: 10.3382/ps.0702023. [DOI] [PubMed] [Google Scholar]
  2. Christe P., Moller A. P., Saino N., De Lope F. Genetic and environmental components of phenotypic variation in immune response and body size of a colonial bird, Delichon urbica (the house martin). Heredity (Edinb) 2000 Jul;85(Pt 1):75–83. doi: 10.1046/j.1365-2540.2000.00732.x. [DOI] [PubMed] [Google Scholar]
  3. Cohn M., Langman R. E. The protecton: the unit of humoral immunity selected by evolution. Immunol Rev. 1990 Jun;115:11–147. doi: 10.1111/j.1600-065x.1990.tb00783.x. [DOI] [PubMed] [Google Scholar]
  4. Dhabhar F. S., McEwen B. S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun. 1997 Dec;11(4):286–306. doi: 10.1006/brbi.1997.0508. [DOI] [PubMed] [Google Scholar]
  5. Dhabhar F. S., Miller A. H., Stein M., McEwen B. S., Spencer R. L. Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behav Immun. 1994 Mar;8(1):66–79. doi: 10.1006/brbi.1994.1006. [DOI] [PubMed] [Google Scholar]
  6. Fair J. M., Hansen E. S., Ricklefs R. E. Growth, developmental stability and immune response in juvenile Japanese quails (Coturnix coturnix japonica). Proc Biol Sci. 1999 Sep 7;266(1430):1735–1742. doi: 10.1098/rspb.1999.0840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goto N., Kodama H., Okada K., Fujimoto Y. Suppression of phytohemagglutinin skin response in thymectomized chickens. Poult Sci. 1978 Jan;57(1):246–250. doi: 10.3382/ps.0570246. [DOI] [PubMed] [Google Scholar]
  8. Greiner E. C., Bennett G. F., White E. M., Coombs R. F. Distribution of the avian hematozoa of North America. Can J Zool. 1975 Dec;53(12):1762–1787. doi: 10.1139/z75-211. [DOI] [PubMed] [Google Scholar]
  9. Gwinner H, Oltrogge M, Trost L, Nienaber U. Green plants in starling nests: effects on nestlings. Anim Behav. 2000 Feb;59(2):301–309. doi: 10.1006/anbe.1999.1306. [DOI] [PubMed] [Google Scholar]
  10. Hamilton W. D. The moulding of senescence by natural selection. J Theor Biol. 1966 Sep;12(1):12–45. doi: 10.1016/0022-5193(66)90184-6. [DOI] [PubMed] [Google Scholar]
  11. Johnsen A., Andersen V., Sunding C., Lifjeld J. T. Female bluethroats enhance offspring immunocompetence through extra-pair copulations. Nature. 2000 Jul 20;406(6793):296–299. doi: 10.1038/35018556. [DOI] [PubMed] [Google Scholar]
  12. Klasing K. C., Laurin D. E., Peng R. K., Fry D. M. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr. 1987 Sep;117(9):1629–1637. doi: 10.1093/jn/117.9.1629. [DOI] [PubMed] [Google Scholar]
  13. Klasing K. C. Nutritional modulation of resistance to infectious diseases. Poult Sci. 1998 Aug;77(8):1119–1125. doi: 10.1093/ps/77.8.1119. [DOI] [PubMed] [Google Scholar]
  14. Martin T. E., Martin P. R., Olson C. R., Heidinger B. J., Fontaine J. J. Parental care and clutch sizes in North and South American birds. Science. 2000 Feb 25;287(5457):1482–1485. doi: 10.1126/science.287.5457.1482. [DOI] [PubMed] [Google Scholar]
  15. Martin T. E., Møller A. P., Merino S., Clobert J. Does clutch size evolve in response to parasites and immunocompetence? Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2071–2076. doi: 10.1073/pnas.98.4.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. doi: 10.1098/rspb.1999.0925. [DOI] [PMC free article] [Google Scholar]
  17. Ricklefs R. E. Embryonic development period and the prevalence of avian blood parasites. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4722–4725. doi: 10.1073/pnas.89.10.4722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Råberg L., Grahn M., Hasselquist D., Svensson E. On the adaptive significance of stress-induced immunosuppression. Proc Biol Sci. 1998 Sep 7;265(1406):1637–1641. doi: 10.1098/rspb.1998.0482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stadecker M. J., Lukic M., Dvorak A., Leskowitz S. The cutaneous basophil response to phytohemagglutinin in chickens. J Immunol. 1977 May;118(5):1564–1568. [PubMed] [Google Scholar]
  20. Tella J. L., Blanco G., Forero M. G., Gajón A., Donázar J. A., Hiraldo F. Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1785–1789. doi: 10.1073/pnas.96.4.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tella J. L., Bortolotti G. R., Dawson R. D., Forero M. G. The T-cell-mediated immune response and return rate of fledgling American kestrels are positively correlated with parental clutch size. Proc Biol Sci. 2000 May 7;267(1446):891–895. doi: 10.1098/rspb.2000.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tella J. L., Forero M. G., Bertellotti M., Donázar J. A., Blanco G., Ceballos O. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: a multiscale approach. Proc Biol Sci. 2001 Jul 22;268(1475):1455–1461. doi: 10.1098/rspb.2001.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12028764s01.pdf (164.3KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES