Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Jun 22;269(1497):1279–1287. doi: 10.1098/rspb.2002.2003

Are most species small? Not within species-level phylogenies.

C David L Orme 1, Nick J B Isaac 1, Andy Purvis 1
PMCID: PMC1691029  PMID: 12065045

Abstract

The robust macro-ecological observation that there are more small-bodied species implies that small-bodied organisms have experienced elevated net rates of diversification. We investigate the role of body size in creating non-random differences in rates of cladogenesis using a set of 38 species-level phylogenies drawn from a range of animal groups. We use independent contrasts to explore the relationship between body size and species richness within individual phylogenies and across related sets of phylogenies. We also carry out a meta-analysis looking for associations between body size and species richness across the taxa. We find little evidence for increased cladogenesis among small-bodied organisms within taxa, and no evidence for any consistent differences between taxa. We explore possible explanations for the inconsistency of our findings with macro-ecological patterns.

Full Text

The Full Text of this article is available as a PDF (126.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Johns G. C. Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7358–7363. doi: 10.1073/pnas.96.13.7358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bininda-Emonds O. R., Gittleman J. L., Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev Camb Philos Soc. 1999 May;74(2):143–175. doi: 10.1017/s0006323199005307. [DOI] [PubMed] [Google Scholar]
  3. Díaz-Uriarte R., Garland T., Jr Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst Biol. 1998 Dec;47(4):654–672. doi: 10.1080/106351598260653. [DOI] [PubMed] [Google Scholar]
  4. Friesen V. L., Baker A. J., Piatt J. F. Phylogenetic relationships within the Alcidae (Charadriiformes: Aves) inferred from total molecular evidence. Mol Biol Evol. 1996 Feb;13(2):359–367. doi: 10.1093/oxfordjournals.molbev.a025595. [DOI] [PubMed] [Google Scholar]
  5. Giribet G., Edgecombe G. D., Wheeler W. C. Arthropod phylogeny based on eight molecular loci and morphology. Nature. 2001 Sep 13;413(6852):157–161. doi: 10.1038/35093097. [DOI] [PubMed] [Google Scholar]
  6. Gittleman J. L., Purvis A. Body size and species-richness in carnivores and primates. Proc Biol Sci. 1998 Jan 22;265(1391):113–119. doi: 10.1098/rspb.1998.0271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hwang U. W., Friedrich M., Tautz D., Park C. J., Kim W. Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature. 2001 Sep 13;413(6852):154–157. doi: 10.1038/35093090. [DOI] [PubMed] [Google Scholar]
  8. Krajewski C., King D. G. Molecular divergence and phylogeny: rates and patterns of cytochrome b evolution in cranes. Mol Biol Evol. 1996 Jan;13(1):21–30. doi: 10.1093/oxfordjournals.molbev.a025558. [DOI] [PubMed] [Google Scholar]
  9. Liu F. G., Miyamoto M. M., Freire N. P., Ong P. Q., Tennant M. R., Young T. S., Gugel K. F. Molecular and morphological supertrees for eutherian (placental) mammals. Science. 2001 Mar 2;291(5509):1786–1789. doi: 10.1126/science.1056346. [DOI] [PubMed] [Google Scholar]
  10. Lucchini V., Höglund J., Klaus S., Swenson J., Randi E. Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan. Mol Phylogenet Evol. 2001 Jul;20(1):149–162. doi: 10.1006/mpev.2001.0943. [DOI] [PubMed] [Google Scholar]
  11. Nee S., Mooers A. O., Harvey P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8322–8326. doi: 10.1073/pnas.89.17.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1999.0726. [DOI] [PMC free article] [Google Scholar]
  13. doi: 10.1098/rspb.1999.0766. [DOI] [PMC free article] [Google Scholar]
  14. Purvis A., Agapow P. M., Gittleman J. L., Mace G. M. Nonrandom extinction and the loss of evolutionary history. Science. 2000 Apr 14;288(5464):328–330. doi: 10.1126/science.288.5464.328. [DOI] [PubMed] [Google Scholar]
  15. Purvis Andy, Katzourakis Aris, Agapow Paul-Michael. Evaluating phylogenetic tree shape: two modifications to Fusco & Cronk's method. J Theor Biol. 2002 Jan 7;214(1):99–103. doi: 10.1006/jtbi.2001.2443. [DOI] [PubMed] [Google Scholar]
  16. Randi E. A mitochondrial cytochrome B phylogeny of the Alectoris partridges. Mol Phylogenet Evol. 1996 Oct;6(2):214–227. doi: 10.1006/mpev.1996.0072. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES