Abstract
A new method for detecting site-specific variation of evolutionary rate (the so-called covarion process) from protein sequence data is proposed. It involves comparing the maximum-likelihood estimates of the replacement rate of an amino acid site in distinct subtrees of a large tree. This approach allows detection of covarion at the gene or the amino acid levels. The method is applied to mammalian-mitochondrial-protein sequences. Significant covarion-like evolution is found in the (simian) primate lineage: some amino acid positions are fast-evolving (i.e. unconstrained) in non-primate mammals but slow-evolving (i.e. highly constrained) in primates, and some show the opposite pattern. Our results indicate that the mitochondrial genome of primates reached a new peak of the adaptive landscape through positive selection.
Full Text
The Full Text of this article is available as a PDF (145.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews T. D., Easteal S. Evolutionary rate acceleration of cytochrome c oxidase subunit I in simian primates. J Mol Evol. 2000 Jun;50(6):562–568. doi: 10.1007/s002390010059. [DOI] [PubMed] [Google Scholar]
- Andrews T. D., Jermiin L. S., Easteal S. Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? J Mol Evol. 1998 Sep;47(3):249–257. doi: 10.1007/pl00006382. [DOI] [PubMed] [Google Scholar]
- Cao Y., Fujiwara M., Nikaido M., Okada N., Hasegawa M. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene. 2000 Dec 23;259(1-2):149–158. doi: 10.1016/s0378-1119(00)00427-3. [DOI] [PubMed] [Google Scholar]
- Fay J. C., Wyckoff G. J., Wu C. I. Positive and negative selection on the human genome. Genetics. 2001 Jul;158(3):1227–1234. doi: 10.1093/genetics/158.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Fitch W. M. Rate of change of concomitantly variable codons. J Mol Evol. 1971;1(1):84–96. doi: 10.1007/BF01659396. [DOI] [PubMed] [Google Scholar]
- Galtier N. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol Biol Evol. 2001 May;18(5):866–873. doi: 10.1093/oxfordjournals.molbev.a003868. [DOI] [PubMed] [Google Scholar]
- Golding G. B., Dean A. M. The structural basis of molecular adaptation. Mol Biol Evol. 1998 Apr;15(4):355–369. doi: 10.1093/oxfordjournals.molbev.a025932. [DOI] [PubMed] [Google Scholar]
- Grossman L. I., Schmidt T. R., Wildman D. E., Goodman M. Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol. 2001 Jan;18(1):26–36. doi: 10.1006/mpev.2000.0890. [DOI] [PubMed] [Google Scholar]
- Halanych K. M., Robinson T. J. Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rDNA data: examining a rapid radiation in leporid (Lagomorpha) evolution. J Mol Evol. 1999 Mar;48(3):369–379. doi: 10.1007/pl00006481. [DOI] [PubMed] [Google Scholar]
- Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Taylor W. R., Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992 Jun;8(3):275–282. doi: 10.1093/bioinformatics/8.3.275. [DOI] [PubMed] [Google Scholar]
- Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
- Lopez P., Forterre P., Philippe H. The root of the tree of life in the light of the covarion model. J Mol Evol. 1999 Oct;49(4):496–508. doi: 10.1007/pl00006572. [DOI] [PubMed] [Google Scholar]
- Madsen O., Scally M., Douady C. J., Kao D. J., DeBry R. W., Adkins R., Amrine H. M., Stanhope M. J., de Jong W. W., Springer M. S. Parallel adaptive radiations in two major clades of placental mammals. Nature. 2001 Feb 1;409(6820):610–614. doi: 10.1038/35054544. [DOI] [PubMed] [Google Scholar]
- Murphy W. J., Eizirik E., Johnson W. E., Zhang Y. P., Ryder O. A., O'Brien S. J. Molecular phylogenetics and the origins of placental mammals. Nature. 2001 Feb 1;409(6820):614–618. doi: 10.1038/35054550. [DOI] [PubMed] [Google Scholar]
- Reyes A., Gissi C., Pesole G., Catzeflis F. M., Saccone C. Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris. Mol Biol Evol. 2000 Jun;17(6):979–983. doi: 10.1093/oxfordjournals.molbev.a026379. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuffley C., Steel M. Modeling the covarion hypothesis of nucleotide substitution. Math Biosci. 1998 Jan 1;147(1):63–91. doi: 10.1016/s0025-5564(97)00081-3. [DOI] [PubMed] [Google Scholar]
- Wu W., Goodman M., Lomax M. I., Grossman L. I. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates. J Mol Evol. 1997 May;44(5):477–491. doi: 10.1007/pl00006172. [DOI] [PubMed] [Google Scholar]
- Wyckoff G. J., Wang W., Wu C. I. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000 Jan 20;403(6767):304–309. doi: 10.1038/35002070. [DOI] [PubMed] [Google Scholar]