Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Jul 7;269(1498):1331–1340. doi: 10.1098/rspb.2002.2020

The sexual selection continuum.

Hanna Kokko 1, Robert Brooks 1, John M McNamara 1, Alasdair I Houston 1
PMCID: PMC1691039  PMID: 12079655

Abstract

The evolution of mate choice for genetic benefits has become the tale of two hypotheses: Fisher's 'run-away' and 'good genes', or viability indicators. These hypotheses are often pitted against each other as alternatives, with evidence that attractive males sire more viable offspring interpreted as support for good genes and with a negative or null relationship between mating success of sons and other components of fitness interpreted as favouring the Fisher process. Here, we build a general model of female choice for indirect benefits that captures the essence of both the 'Fisherian' and 'good-genes' models. All versions of our model point to a single process that favours female preference for males siring offspring of high reproductive value. Enhanced mating success and survival are therefore equally valid genetic benefits of mate choice, but their relative importance varies depending on female choice costs. The relationship between male attractiveness and survival may be positive or negative, depending on life-history trade-offs and mating skew. This relationship can change sign in response to increased costliness of choice or environmental change. Any form of female preference is subject to self-reinforcing evolution, and any relationship (or lack thereof) between male display and offspring survival is inevitably an indicator of offspring reproductive values. Costly female choice can be maintained with or without higher offspring survival.

Full Text

The Full Text of this article is available as a PDF (301.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W., Wilmer J. W., Fullard K., Burg T. M., Croxall J. P., Bloch D., Coulson T. The influence of parental relatedness on reproductive success. Proc Biol Sci. 2001 Oct 7;268(1480):2021–2027. doi: 10.1098/rspb.2001.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blows M. W. Evolution of the genetic covariance between male and female components of mate recognition: an experimental test. Proc Biol Sci. 1999 Nov 7;266(1434):2169–2174. doi: 10.1098/rspb.1999.0904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boots Michael, Knell Robert J. The evolution of risky behaviour in the presence of a sexually transmitted disease. Proc Biol Sci. 2002 Mar 22;269(1491):585–589. doi: 10.1098/rspb.2001.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks R. Negative genetic correlation between male sexual attractiveness and survival. Nature. 2000 Jul 6;406(6791):67–70. doi: 10.1038/35017552. [DOI] [PubMed] [Google Scholar]
  5. Grafen A. Biological signals as handicaps. J Theor Biol. 1990 Jun 21;144(4):517–546. doi: 10.1016/s0022-5193(05)80088-8. [DOI] [PubMed] [Google Scholar]
  6. Grafen A. Sexual selection unhandicapped by the Fisher process. J Theor Biol. 1990 Jun 21;144(4):473–516. doi: 10.1016/s0022-5193(05)80087-6. [DOI] [PubMed] [Google Scholar]
  7. Hamilton W. D., Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982 Oct 22;218(4570):384–387. doi: 10.1126/science.7123238. [DOI] [PubMed] [Google Scholar]
  8. Heisler I. L. Quantitative genetic models of female choice based on "arbitrary" male characters. Heredity (Edinb) 1985 Oct;55(Pt 2):187–198. doi: 10.1038/hdy.1985.91. [DOI] [PubMed] [Google Scholar]
  9. Houle David, Kondrashov Alexey S. Coevolution of costly mate choice and condition-dependent display of good genes. Proc Biol Sci. 2002 Jan 7;269(1486):97–104. doi: 10.1098/rspb.2001.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iwasa Y., Pomiankowski A. Continual change in mate preferences. Nature. 1995 Oct 5;377(6548):420–422. doi: 10.1038/377420a0. [DOI] [PubMed] [Google Scholar]
  11. Jennions M. D., Møller A. P., Petrie M. Sexually selected traits and adult survival: a meta-analysis. Q Rev Biol. 2001 Mar;76(1):3–36. doi: 10.1086/393743. [DOI] [PubMed] [Google Scholar]
  12. Kotiaho J. S., Simmons L. W., Tomkins J. L. Towards a resolution of the lek paradox. Nature. 2001 Apr 5;410(6829):684–686. doi: 10.1038/35070557. [DOI] [PubMed] [Google Scholar]
  13. Lande R. Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3721–3725. doi: 10.1073/pnas.78.6.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. doi: 10.1098/rspb.1998.0484. [DOI] [PMC free article] [Google Scholar]
  15. Pomiankowski A. The costs of choice in sexual selection. J Theor Biol. 1987 Sep 21;128(2):195–218. doi: 10.1016/s0022-5193(87)80169-8. [DOI] [PubMed] [Google Scholar]
  16. Rice W. R. Sexually antagonistic genes: experimental evidence. Science. 1992 Jun 5;256(5062):1436–1439. doi: 10.1126/science.1604317. [DOI] [PubMed] [Google Scholar]
  17. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  18. Taylor P. D., Frank S. A. How to make a kin selection model. J Theor Biol. 1996 May 7;180(1):27–37. doi: 10.1006/jtbi.1996.0075. [DOI] [PubMed] [Google Scholar]
  19. Veen T., Borge T., Griffith S. C., Saetre G. P., Bures S., Gustafsson L., Sheldon B. C. Hybridization and adaptive mate choice in flycatchers. Nature. 2001 May 3;411(6833):45–50. doi: 10.1038/35075000. [DOI] [PubMed] [Google Scholar]
  20. Zahavi A. Mate selection-a selection for a handicap. J Theor Biol. 1975 Sep;53(1):205–214. doi: 10.1016/0022-5193(75)90111-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES