Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Jul 7;269(1498):1375–1381. doi: 10.1098/rspb.2002.2032

Not as the crow flies: a historical explanation for circuitous migration in Swainson's thrush (Catharus ustulatus).

Kristen C Ruegg 1, Thomas B Smith 1
PMCID: PMC1691041  PMID: 12079661

Abstract

Many migratory songbirds follow circuitous migratory routes instead of taking the shortest path between overwintering and breeding areas. Here, we study the migration patterns in Swainson's thrush (Catharus ustulatus), a neartic-neotropical migrant songbird, using molecular genetic approaches. This species is presently separated into genetically distinct coastal and continental populations that diverged during the Late Pleistocene (as indicated by molecular dating), yet appear to have retained ancestral patterns of migration. Low nucleotide diversity, a star-like haplotype phylogeny and unimodal mismatch distributions all support the hypothesis that both the coastal and the continental populations have undergone recent demographic expansions. Nearctic-neotropical banding and genetic data show nearly complete segregation of migratory routes and of overwintering locations: coastal populations migrate along the Pacific Coast to overwintering sites in Central America and Mexico, whereas continental populations migrate along an eastern route to overwintering sites in Panama and South America. Nearctic-neotropical banding data also show that continental birds north, northwest and east of this migratory divide fly thousands of miles east before turning south. We conclude that circuitous migration in the Swainson's thrush is an artefact of a Late Pleistocene range expansion.

Full Text

The Full Text of this article is available as a PDF (495.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alerstam T. Detours in bird migration. J Theor Biol. 2001 Apr 7;209(3):319–331. doi: 10.1006/jtbi.2001.2266. [DOI] [PubMed] [Google Scholar]
  2. Avise J. C., Walker D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc Biol Sci. 1998 Mar 22;265(1395):457–463. doi: 10.1098/rspb.1998.0317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthold P., Querner U. Genetic basis of migratory behavior in European warblers. Science. 1981 Apr 3;212(4490):77–79. doi: 10.1126/science.212.4490.77. [DOI] [PubMed] [Google Scholar]
  4. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Milot E., Gibbs H. L., Hobson K. A. Phylogeography and genetic structure of northern populations of the yellow warbler (Dendroica petechia). Mol Ecol. 2000 Jun;9(6):667–681. doi: 10.1046/j.1365-294x.2000.00897.x. [DOI] [PubMed] [Google Scholar]
  6. Milá B., Girman D. J., Kimura M., Smith T. B. Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. Proc Biol Sci. 2000 May 22;267(1447):1033–1040. doi: 10.1098/rspb.2000.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Quinn T. W. The genetic legacy of Mother Goose--phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol Ecol. 1992 Aug;1(2):105–117. doi: 10.1111/j.1365-294x.1992.tb00162.x. [DOI] [PubMed] [Google Scholar]
  8. Robbins C. S., Sauer J. R., Greenberg R. S., Droege S. Population declines in North American birds that migrate to the neotropics. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7658–7662. doi: 10.1073/pnas.86.19.7658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
  10. Schneider S., Excoffier L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics. 1999 Jul;152(3):1079–1089. doi: 10.1093/genetics/152.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tarr C. L. Primers for amplification and determination of mitochondrial control-region sequences in oscine passerines. Mol Ecol. 1995 Aug;4(4):527–529. doi: 10.1111/j.1365-294x.1995.tb00251.x. [DOI] [PubMed] [Google Scholar]
  12. Wenink P. W., Baker A. J., Tilanus M. G. Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):94–98. doi: 10.1073/pnas.90.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wennerberg L. Breeding origin and migration pattern of dunlin (Calidris alpina) revealed by mitochondrial DNA analysis. Mol Ecol. 2001 May;10(5):1111–1120. doi: 10.1046/j.1365-294x.2001.01256.x. [DOI] [PubMed] [Google Scholar]
  14. Wolfson A. Bird Migration and the Concept of Continental Drift. Science. 1948 Jul 9;108(2793):23–30. doi: 10.1126/science.108.2793.23. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES