Abstract
Smallpox causes roughly 20% mortality whereas chickenpox causes less than 0.1%. Most 'verbal' (i.e. non-mathematical) discussions using a mortality definition of virulence would therefore label smallpox as more virulent. Indeed, the virulence of many diseases is measured using such case mortalities, chi, or related measures such as expected host lifespan, T, or lethal dose, LD(x). But chi, T and LD(x) are only indirectly related to parasite-induced instantaneous mortality rate, alpha, which is the mortality measure used in much of the theory developed to explain virulence evolution. Here I point out that relatively deadly pathogens can actually have lower values of alpha than benign pathogens, demonstrating that alpha does not, by itself, reflect the extent to which a parasite causes host mortality. I present mathematical relationships between alpha and chi, T and LD(x), and use these to demonstrate that predictions about virulence evolution can be qualitatively altered depending upon which measure is used as the definition of virulence. Two simple examples are presented to illustrate this point, one of which demonstrates that the well-cited prediction that virulence should evolve to be higher when disease-independent host mortality increases need not hold. This prediction has been made in terms of parasite-induced instantaneous mortality, alpha, but if virulence is measured using case mortality (or T or LD(x)) then this prediction can easily be reversed. Theoretical and empirical researchers must use compatible mortality measures before a productive exchange between the two can take place, and it is suggested that case mortality (or lethal dose) is best suited as a single (mortality) measure of parasite virulence.
Full Text
The Full Text of this article is available as a PDF (182.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. M., May R. M. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. doi: 10.1017/s0031182000055360. [DOI] [PubMed] [Google Scholar]
- Day T. Parasite transmission modes and the evolution of virulence. Evolution. 2001 Dec;55(12):2389–2400. doi: 10.1111/j.0014-3820.2001.tb00754.x. [DOI] [PubMed] [Google Scholar]
- Diekmann O., Heesterbeek J. A., Metz J. A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–382. doi: 10.1007/BF00178324. [DOI] [PubMed] [Google Scholar]
- Ebert D., Herre E. A. The evolution of parasitic diseases. Parasitol Today. 1996 Mar;12(3):96–101. doi: 10.1016/0169-4758(96)80668-5. [DOI] [PubMed] [Google Scholar]
- Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. Science. 1994 Aug 19;265(5175):1084–1086. doi: 10.1126/science.265.5175.1084. [DOI] [PubMed] [Google Scholar]
- Ebert D., Weisser W. W. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc Biol Sci. 1997 Jul 22;264(1384):985–991. doi: 10.1098/rspb.1997.0136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank S. A. A kin selection model for the evolution of virulence. Proc Biol Sci. 1992 Dec 22;250(1329):195–197. doi: 10.1098/rspb.1992.0149. [DOI] [PubMed] [Google Scholar]
- Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
- Ganusov Vitaly V., Bergstrom Carl T., Antia Rustom. Within-host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution. 2002 Feb;56(2):213–223. doi: 10.1111/j.0014-3820.2002.tb01332.x. [DOI] [PubMed] [Google Scholar]
- Lenski R. E., May R. M. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol. 1994 Aug 7;169(3):253–265. doi: 10.1006/jtbi.1994.1146. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Bull J. J., Stewart F. M. The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications. Math Biosci. 1996 Feb;132(1):69–96. doi: 10.1016/0025-5564(95)00053-4. [DOI] [PubMed] [Google Scholar]
- Levin B. R. The evolution and maintenance of virulence in microparasites. Emerg Infect Dis. 1996 Apr-Jun;2(2):93–102. doi: 10.3201/eid0202.960203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsitch M., Moxon E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 1997 Jan;5(1):31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
- May R. M., Nowak M. A. Coinfection and the evolution of parasite virulence. Proc Biol Sci. 1995 Aug 22;261(1361):209–215. doi: 10.1098/rspb.1995.0138. [DOI] [PubMed] [Google Scholar]
- Messenger S. L., Molineux I. J., Bull J. J. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci. 1999 Feb 22;266(1417):397–404. doi: 10.1098/rspb.1999.0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
- Read A. F. The evolution of virulence. Trends Microbiol. 1994 Mar;2(3):73–76. doi: 10.1016/0966-842x(94)90537-1. [DOI] [PubMed] [Google Scholar]
- Sasaki A., Iwasa Y. Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theor Popul Biol. 1991 Apr;39(2):201–239. doi: 10.1016/0040-5809(91)90036-f. [DOI] [PubMed] [Google Scholar]
- Williams P. D., Day T. Interactions between sources of mortality and the evolution of parasite virulence. Proc Biol Sci. 2001 Nov 22;268(1483):2331–2337. doi: 10.1098/rspb.2001.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Baalen M. Coevolution of recovery ability and virulence. Proc Biol Sci. 1998 Feb 22;265(1393):317–325. doi: 10.1098/rspb.1998.0298. [DOI] [PMC free article] [PubMed] [Google Scholar]