Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Aug 7;269(1500):1541–1548. doi: 10.1098/rspb.2002.2044

Identifying the transition between single and multiple mating of queens in fungus-growing ants.

Palle Villesen 1, Takahiro Murakami 1, Ted R Schultz 1, Jacobus J Boomsma 1
PMCID: PMC1691065  PMID: 12184823

Abstract

Obligate mating of females (queens) with multiple males has evolved only rarely in social Hymenoptera (ants, social bees, social wasps) and for reasons that are fundamentally different from those underlying multiple mating in other animals. The monophyletic tribe of ('attine') fungus-growing ants is known to include evolutionarily derived genera with obligate multiple mating (the Acromyrmex and Atta leafcutter ants) as well as phylogenetically basal genera with exclusively single mating (e.g. Apterostigma, Cyphomyrmex, Myrmicocrypta). All attine genera share the unique characteristic of obligate dependence on symbiotic fungus gardens for food, but the sophistication of this symbiosis differs considerably across genera. The lower attine genera generally have small, short-lived colonies and relatively non-specialized fungal symbionts (capable of living independently of their ant hosts), whereas the four evolutionarily derived higher attine genera have highly specialized, long-term clonal symbionts. In this paper, we investigate whether the transition from single to multiple mating occurred relatively recently in the evolution of the attine ants, in conjunction with the novel herbivorous 'leafcutter' niche acquired by the common ancestor of Acromyrmex and Atta, or earlier, at the transition to rearing specialized long-term clonal fungi in the common ancestor of the larger group of higher attines that also includes the genera Trachymyrmex and Sericomyrmex. We use DNA microsatellite analysis to provide unambiguous evidence for a single, late and abrupt evolutionary transition from exclusively single to obligatory multiple mating. This transition is historically correlated with other evolutionary innovations, including the extensive use of fresh vegetation as substrate for the fungus garden, a massive increase in mature colony size and morphological differentiation of the worker caste.

Full Text

The Full Text of this article is available as a PDF (228.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. M., Mueller U. G., Holloway A. K., Green A. M., Narozniak J. Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften. 2000 Nov;87(11):491–493. doi: 10.1007/s001140050765. [DOI] [PubMed] [Google Scholar]
  2. Baer B., Schmid-Hempel P. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution. 2001 Aug;55(8):1639–1643. doi: 10.1111/j.0014-3820.2001.tb00683.x. [DOI] [PubMed] [Google Scholar]
  3. Chapela I. H., Rehner S. A., Schultz T. R., Mueller U. G. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science. 1994 Dec 9;266(5191):1691–1694. doi: 10.1126/science.266.5191.1691. [DOI] [PubMed] [Google Scholar]
  4. Currie C. R., Mueller U. G., Malloch D. The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998–8002. doi: 10.1073/pnas.96.14.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Estoup A., Scholl A., Pouvreau A., Solignac M. Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol Ecol. 1995 Feb;4(1):89–93. doi: 10.1111/j.1365-294x.1995.tb00195.x. [DOI] [PubMed] [Google Scholar]
  6. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  7. Mueller U. G., Schultz T. R., Currie C. R., Adams R. M., Malloch D. The origin of the attine ant-fungus mutualism. Q Rev Biol. 2001 Jun;76(2):169–197. doi: 10.1086/393867. [DOI] [PubMed] [Google Scholar]
  8. Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants . Science. 1998 Sep 25;281(5385):2034–2038. doi: 10.1126/science.281.5385.2034. [DOI] [PubMed] [Google Scholar]
  9. Ortius-Lechner D., Gertsch P. J., Boomsma J. J. Variable microsatellite loci for the leafcutter ant Acromyrmex echinatior and their applicability to related species. Mol Ecol. 2000 Jan;9(1):114–116. doi: 10.1046/j.1365-294x.2000.00764-5.x. [DOI] [PubMed] [Google Scholar]
  10. doi: 10.1098/rspb.1999.0629. [DOI] [PMC free article] [Google Scholar]
  11. doi: 10.1098/rspb.1999.0648. [DOI] [PMC free article] [Google Scholar]
  12. doi: 10.1098/rstb.1999.0401. [DOI] [PMC free article] [Google Scholar]
  13. Rodríguez F., Oliver J. L., Marín A., Medina J. R. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. doi: 10.1016/s0022-5193(05)80104-3. [DOI] [PubMed] [Google Scholar]
  14. Villesen P., Gertsch P. J., Frydenberg J., Mueller U. G., Boomsma J. J. Evolutionary transition from single to multiple mating in fungus-growing ants. Mol Ecol. 1999 Nov;8(11):1819–1825. doi: 10.1046/j.1365-294x.1999.00767.x. [DOI] [PubMed] [Google Scholar]
  15. Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]
  16. Weber N. A. Fungus-growing ants. Science. 1966 Aug 5;153(3736):587–604. doi: 10.1126/science.153.3736.587. [DOI] [PubMed] [Google Scholar]
  17. Wetterer J. K., Schultz T. R., Meier R. Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. Mol Phylogenet Evol. 1998 Feb;9(1):42–47. doi: 10.1006/mpev.1997.0466. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES