Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Aug 22;269(1501):1701–1707. doi: 10.1098/rspb.2002.2094

Heteropopulation males have a fertilization advantage during sperm competition in the yellow dung fly (Scathophaga stercoraria).

D J Hosken 1, W U Blanckenhorn 1, T W J Garner 1
PMCID: PMC1691078  PMID: 12204131

Abstract

Sexual conflict occurs whenever there is not strict genetic monogamy. The sexually antagonistic coevolution that potentially occurs because of this conflict involves adaptation by one sex followed by the counter-adaptation by the other, and may be thought of as an evolutionary arms-race. As a result of these cycles of antagonistic coevolution, females from one population may be less resistant to heteropopulation males, at least after short periods of allopatry, as they will not have evolved any resistance to them. We tested this prediction in yellow dung fly (Scathophaga stercoraria) populations from the UK and Switzerland. Males from each population mated as first and second males to females from each population, and the mean numbers of offspring sired by the last male to mate in each situation were compared. We also compared the fertility and fecundity of single females mated to males from both populations, as well as the fertility and fecundity of the F(1) crosses. Both crosses produced viable and fertile offspring and the offspring sex ratios were not skewed. However, the fecundity of F(1)-cross females was greater than that of the parentals. In the sperm-competition experiment, there was a significant interaction between male and female origin influencing the proportion of offspring sired by the second male to mate, with heteropopulation males always outcompeting conpopulation males. This effect was independent of copula duration and the delay between copulations. In a separate experiment, we tested to see whether this was due to female preference for genetically dissimilar males but found no evidence for paternity biasing based on genetic similarity. Our results therefore seem to be best explained by sexually antagonistic coevolution as females appear less resistant to males with which they have not coevolved.

Full Text

The Full Text of this article is available as a PDF (114.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alipaz J. A., Wu C. I., Karr T. L. Gametic incompatibilities between races of Drosophila melanogaster. Proc Biol Sci. 2001 Apr 22;268(1469):789–795. doi: 10.1098/rspb.2000.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrés J. A., Arnqvist G. Genetic divergence of the seminal signal-receptor system in houseflies: the footprints of sexually antagonistic coevolution? Proc Biol Sci. 2001 Feb 22;268(1465):399–405. doi: 10.1098/rspb.2000.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D. V., Eady P. E. Functional incompatibility between the fertilization systems of two allopatric populations of Callosobruchus maculatus (Coleoptera: Bruchidae). Evolution. 2001 Nov 11;55(11):2257–2262. doi: 10.1111/j.0014-3820.2001.tb00740.x. [DOI] [PubMed] [Google Scholar]
  5. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  6. Chapman T. Seminal fluid-mediated fitness traits in Drosophila. Heredity (Edinb) 2001 Nov;87(Pt 5):511–521. doi: 10.1046/j.1365-2540.2001.00961.x. [DOI] [PubMed] [Google Scholar]
  7. Clark A. G., Begun D. J., Prout T. Female x male interactions in Drosophila sperm competition. Science. 1999 Jan 8;283(5399):217–220. doi: 10.1126/science.283.5399.217. [DOI] [PubMed] [Google Scholar]
  8. Coltman D. W., Bowen W. D., Wright J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc Biol Sci. 1998 May 7;265(1398):803–809. doi: 10.1098/rspb.1998.0363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coulson T. N., Pemberton J. M., Albon S. D., Beaumont M., Marshall T. C., Slate J., Guinness F. E., Clutton-Brock T. H. Microsatellites reveal heterosis in red deer. Proc Biol Sci. 1998 Mar 22;265(1395):489–495. doi: 10.1098/rspb.1998.0321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crudgington H. S., Siva-Jothy M. T. Genital damage, kicking and early death. Nature. 2000 Oct 19;407(6806):855–856. doi: 10.1038/35038154. [DOI] [PubMed] [Google Scholar]
  11. Garner T. W., Brinkmann H., Gerlach G., Meyer A., Ward P. I., Spörri M., Hosken D. J. Polymorphic DNA microsatellites identified in the yellow dung fly (Scathophaga stercoraria). Mol Ecol. 2000 Dec;9(12):2207–2209. doi: 10.1046/j.1365-294x.2000.105328.x. [DOI] [PubMed] [Google Scholar]
  12. Hellberg M. E., Vacquier V. D. Rapid evolution of fertilization selectivity and lysin cDNA sequences in teguline gastropods. Mol Biol Evol. 1999 Jun;16(6):839–848. doi: 10.1093/oxfordjournals.molbev.a026168. [DOI] [PubMed] [Google Scholar]
  13. Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hosken D. J., Garner T. W., Ward P. I. Sexual conflict selects for male and female reproductive characters. Curr Biol. 2001 Apr 3;11(7):489–493. doi: 10.1016/s0960-9822(01)00146-4. [DOI] [PubMed] [Google Scholar]
  15. Hosken D. J. Sex and death: microevolutionary trade-offs between reproductive and immune investment in dung flies. Curr Biol. 2001 May 15;11(10):R379–R380. doi: 10.1016/s0960-9822(01)00211-1. [DOI] [PubMed] [Google Scholar]
  16. Hosken DJ, Ward PI. Copula in yellow dung flies (Scathophaga stercoraria): investigating sperm competition models by histological observation. J Insect Physiol. 2000 Oct 1;46(10):1355–1363. doi: 10.1016/s0022-1910(00)00057-3. [DOI] [PubMed] [Google Scholar]
  17. Knowles L. L., Markow T. A. Sexually antagonistic coevolution of a postmating-prezygotic reproductive character in desert Drosophila. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8692–8696. doi: 10.1073/pnas.151123998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Markow T. A. Assortative fertilization in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7756–7760. doi: 10.1073/pnas.94.15.7756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrow E. H., Gage M. J. The evolution of sperm length in moths. Proc Biol Sci. 2000 Feb 7;267(1440):307–313. doi: 10.1098/rspb.2000.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. doi: 10.1098/rspb.1997.0206. [DOI] [PMC free article] [Google Scholar]
  21. Parker G. A., Partridge L. Sexual conflict and speciation. Philos Trans R Soc Lond B Biol Sci. 1998 Feb 28;353(1366):261–274. doi: 10.1098/rstb.1998.0208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pitnick S., Miller G. T., Reagan J., Holland B. Males' evolutionary responses to experimental removal of sexual selection. Proc Biol Sci. 2001 May 22;268(1471):1071–1080. doi: 10.1098/rspb.2001.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reusch T. B., Häberli M. A., Aeschlimann P. B., Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature. 2001 Nov 15;414(6861):300–302. doi: 10.1038/35104547. [DOI] [PubMed] [Google Scholar]
  24. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  25. Snook R. R. Sexual selection: conflict, kindness and chicanery. Curr Biol. 2001 May 1;11(9):R337–R341. doi: 10.1016/s0960-9822(01)00188-9. [DOI] [PubMed] [Google Scholar]
  26. Tregenza T., Wedell N. Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol. 2000 Aug;9(8):1013–1027. doi: 10.1046/j.1365-294x.2000.00964.x. [DOI] [PubMed] [Google Scholar]
  27. Tregenza Tom, Wedell Nina. Polyandrous females avoid costs of inbreeding. Nature. 2002 Jan 3;415(6867):71–73. doi: 10.1038/415071a. [DOI] [PubMed] [Google Scholar]
  28. Ward P. I. Cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.). Evolution. 2000 Oct;54(5):1680–1686. doi: 10.1111/j.0014-3820.2000.tb00712.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES