Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Sep 7;269(1502):1841–1846. doi: 10.1098/rspb.2002.2096

Parental modifiers, antisense transcripts and loss of imprinting.

Jon F Wilkins 1, David Haig 1
PMCID: PMC1691092  PMID: 12350273

Abstract

The kinship theory of genomic imprinting has explained parent-specific gene expression as the outcome of an evolutionary conflict between the two alleles at a diploid locus of an offspring over how much to demand from parents. Previous models have predicted that maternally derived (madumnal) alleles will be silent at demand-enhancing loci, while paternally derived (padumnal) alleles will be silent at demand-suppressing loci, but these models have not considered the evolution of trans-acting modifiers that are expressed in parents and influence imprinted expression in offspring. We show that such modifiers will sometimes be selected to reactivate the silent padumnal allele at a demand-suppressing locus but will not be selected to reactivate the silent madumnal allele at a demand-enhancing locus. Therefore, imprinting of demand-suppressing loci is predicted to be less evolutionarily stable than imprinting of demand-enhancing loci.

Full Text

The Full Text of this article is available as a PDF (139.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burt A., Trivers R. Genetic conflicts in genomic imprinting. Proc Biol Sci. 1998 Dec 22;265(1413):2393–2397. doi: 10.1098/rspb.1998.0589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haig D. Intragenomic conflict and the evolution of eusociality. J Theor Biol. 1992 Jun 7;156(3):401–403. doi: 10.1016/s0022-5193(05)80683-6. [DOI] [PubMed] [Google Scholar]
  3. Haig D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Biol Sci. 1997 Nov 22;264(1388):1657–1662. doi: 10.1098/rspb.1997.0230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haig D., Wilkins J. F. Genomic imprinting, sibling solidairity and the logic of collective action. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1593–1597. doi: 10.1098/rstb.2000.0720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Howell C. Y., Bestor T. H., Ding F., Latham K. E., Mertineit C., Trasler J. M., Chaillet J. R. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001 Mar 23;104(6):829–838. doi: 10.1016/s0092-8674(01)00280-x. [DOI] [PubMed] [Google Scholar]
  6. Killian J. K., Nolan C. M., Stewart N., Munday B. L., Andersen N. A., Nicol S., Jirtle R. L. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool. 2001 Aug 15;291(2):205–212. doi: 10.1002/jez.1070. [DOI] [PubMed] [Google Scholar]
  7. Killian J. K., Nolan C. M., Wylie A. A., Li T., Vu T. H., Hoffman A. R., Jirtle R. L. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet. 2001 Aug 15;10(17):1721–1728. doi: 10.1093/hmg/10.17.1721. [DOI] [PubMed] [Google Scholar]
  8. Macleod D., Clark V. H., Bird A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nat Genet. 1999 Oct;23(2):139–140. doi: 10.1038/13767. [DOI] [PubMed] [Google Scholar]
  9. Mayer W., Niveleau A., Walter J., Fundele R., Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000 Feb 3;403(6769):501–502. doi: 10.1038/35000656. [DOI] [PubMed] [Google Scholar]
  10. Mochizuki A., Takeda Y., Iwasa Y. The evolution of genomic imprinting. Genetics. 1996 Nov;144(3):1283–1295. doi: 10.1093/genetics/144.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oswald J., Engemann S., Lane N., Mayer W., Olek A., Fundele R., Dean W., Reik W., Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000 Apr 20;10(8):475–478. doi: 10.1016/s0960-9822(00)00448-6. [DOI] [PubMed] [Google Scholar]
  12. Reik W., Walter J. Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet. 2001 Mar;27(3):255–256. doi: 10.1038/85804. [DOI] [PubMed] [Google Scholar]
  13. Reik W., Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001 Jan;2(1):21–32. doi: 10.1038/35047554. [DOI] [PubMed] [Google Scholar]
  14. Sapienza C. Genome imprinting and dominance modification. Ann N Y Acad Sci. 1989;564:24–38. doi: 10.1111/j.1749-6632.1989.tb25885.x. [DOI] [PubMed] [Google Scholar]
  15. Spencer H. G., Williams M. J. The evolution of genomic imprinting: two modifier-locus models. Theor Popul Biol. 1997 Feb;51(1):23–35. doi: 10.1006/tpbi.1997.1293. [DOI] [PubMed] [Google Scholar]
  16. Trivers R., Burt A. Kinship and genomic imprinting. Results Probl Cell Differ. 1999;25:1–21. doi: 10.1007/978-3-540-69111-2_1. [DOI] [PubMed] [Google Scholar]
  17. Wilkins J. F., Haig D. Genomic imprinting of two antagonistic loci. Proc Biol Sci. 2001 Sep 22;268(1479):1861–1867. doi: 10.1098/rspb.2001.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES