Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Oct 7;269(1504):2023–2027. doi: 10.1098/rspb.2002.2101

Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria.

Steven van Borm 1, Alfred Buschinger 1, Jacobus J Boomsma 1, Johan Billen 1
PMCID: PMC1691126  PMID: 12396501

Abstract

Some Tetraponera ants (Formicidae, Pseudomyrmecinae) subsist almost entirely on amino acid deficient honeydew secretions of pseudococcids and harbour a dense aggregation of bacterial symbionts in a unique pouch-shaped organ at the junction of the midgut and the intestine. The organ is surrounded by a network of intruding tracheae and Malpighian tubules, suggesting that these bacteria are involved in the oxidative recycling of nitrogen-rich metabolic waste. We have examined the ultrastructure of these bacteria and have amplified, cloned and sequenced ribosomal RNA-encoding genes, showing that the ant pouch contains a series of close relatives of Flavobacteria and Rhizobium, Methylobacterium, Burkholderia and Pseudomonas nitrogen-fixing root-nodule bacteria. We argue that pouch bacteria have been repeatedly 'domesticated' by the ants as nitrogen-recycling endosymbionts. This ant-associated community of mutualists is, to our knowledge, the first finding of symbionts related to root-nodule bacteria in animals.

Full Text

The Full Text of this article is available as a PDF (313.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R., Springer N., Ludwig W., Görtz H. D., Schleifer K. H. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991 May 9;351(6322):161–164. doi: 10.1038/351161a0. [DOI] [PubMed] [Google Scholar]
  3. Bacci M., Jr, Anversa M. M., Pagnocca F. C. Cellulose degradation by Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens rubropilosa. Antonie Van Leeuwenhoek. 1995;67(4):385–386. doi: 10.1007/BF00872939. [DOI] [PubMed] [Google Scholar]
  4. Douglas A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37. doi: 10.1146/annurev.ento.43.1.17. [DOI] [PubMed] [Google Scholar]
  5. Ghiglione J. F., Gourbiere F., Potier P., Philippot L., Lensi R. Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl Environ Microbiol. 2000 Sep;66(9):4012–4016. doi: 10.1128/aem.66.9.4012-4016.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
  7. Macrae A., Rimmer D. L., O'Donnell A. G. Novel bacterial diversity recovered from the rhizosphere of oilseed rape (Brassica napus) determined by the analysis of 16S ribosomal DNA. Antonie Van Leeuwenhoek. 2000 Jul;78(1):13–21. doi: 10.1023/a:1002745312030. [DOI] [PubMed] [Google Scholar]
  8. Minerdi D., Fani R., Gallo R., Boarino A., Bonfante P. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol. 2001 Feb;67(2):725–732. doi: 10.1128/AEM.67.2.725-732.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moulin L., Munive A., Dreyfus B., Boivin-Masson C. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature. 2001 Jun 21;411(6840):948–950. doi: 10.1038/35082070. [DOI] [PubMed] [Google Scholar]
  10. Potrikus C. J., Breznak J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4601–4605. doi: 10.1073/pnas.78.7.4601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schröder D., Deppisch H., Obermayer M., Krohne G., Stackebrandt E., Hôlldobler B., Goebel W., Gross R. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996 Aug;21(3):479–489. doi: 10.1111/j.1365-2958.1996.tb02557.x. [DOI] [PubMed] [Google Scholar]
  12. Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M., Boivin-Masson C. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol. 2001 Jan;183(1):214–220. doi: 10.1128/JB.183.1.214-220.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES