Abstract
Evaluating the component features of 'scaling' planktonic size spectra, commonly observed in marine ecosystems, is crucial for understanding the ecological and evolutionary processes from which they emerge. Here, we develop a theoretical framework that describes such spectra in terms of the size distributions of individual species, and test it against actual datasets of microbial size spectra from the Atlantic Ocean. We describe characteristics of size probability distributions of component species that are sufficient to support the observational evidence and infer that, when a power law describes the community size spectrum (thus suggesting critical self-organization of microbial ecosystem structure and function), a related power law links the total number of individuals of a given species to its mean size.
Full Text
The Full Text of this article is available as a PDF (989.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Levin S. A., Grenfell B., Hastings A., Perelson A. S. Mathematical and computational challenges in population biology and ecosystems science. Science. 1997 Jan 17;275(5298):334–343. doi: 10.1126/science.275.5298.334. [DOI] [PubMed] [Google Scholar]
- Marie D., Partensky F., Jacquet S., Vaulot D. Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I. Appl Environ Microbiol. 1997 Jan;63(1):186–193. doi: 10.1128/aem.63.1.186-193.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marquet P. A. Ecology. Invariants, scaling laws, and ecological complexity. Science. 2000 Sep 1;289(5484):1487–1488. doi: 10.1126/science.289.5484.1487. [DOI] [PubMed] [Google Scholar]
- Maurer Brian A. Big thinking. Nature. 2002 Jan 31;415(6871):489–491. doi: 10.1038/415489a. [DOI] [PubMed] [Google Scholar]
- May R. M., Stumpf M. P. Ecology. Species-area relations in tropical forests. Science. 2000 Dec 15;290(5499):2084–2086. doi: 10.1126/science.290.5499.2084. [DOI] [PubMed] [Google Scholar]
- Niklas K. J., Enquist B. J. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci U S A. 2001 Feb 6;98(5):2922–2927. doi: 10.1073/pnas.041590298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post D. M., Pace M. L., Hairston N. G., Jr Ecosystem size determines food-chain length in lakes. Nature. 2000 Jun 29;405(6790):1047–1049. doi: 10.1038/35016565. [DOI] [PubMed] [Google Scholar]
- Prothero J. Methodological aspects of scaling in biology. J Theor Biol. 1986 Feb 7;118(3):259–286. doi: 10.1016/s0022-5193(86)80058-3. [DOI] [PubMed] [Google Scholar]
- Ritchie M. E., Olff H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature. 1999 Aug 5;400(6744):557–560. doi: 10.1038/23010. [DOI] [PubMed] [Google Scholar]
- Rodríguez J., Tintoré J., Allen J. T., Blanco J. M., Gomis D., Reul A., Ruiz J., Rodríguez V., Echevarría F., Jiménez-Gómez F. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature. 2001 Mar 15;410(6826):360–363. doi: 10.1038/35066560. [DOI] [PubMed] [Google Scholar]
- Schmid P. E., Tokeshi M., Schmid-Araya J. M. Relation between population density and body size in stream communities. Science. 2000 Sep 1;289(5484):1557–1560. doi: 10.1126/science.289.5484.1557. [DOI] [PubMed] [Google Scholar]
- Solé RV, Manrubia SC, Benton M, Kauffman S, Bak P. Criticality and scaling in evolutionary ecology. Trends Ecol Evol. 1999 Apr;14(4):156–160. doi: 10.1016/s0169-5347(98)01518-3. [DOI] [PubMed] [Google Scholar]