Abstract
The extreme polymorphism found at some major histocompatibility complex (MHC) loci is believed to be maintained by balancing selection caused by infectious pathogens. Experimental support for this is inconclusive. We have studied the interaction between certain MHC alleles and the bacterium Aeromonas salmonicida, which causes the severe disease furunculosis, in Atlantic salmon (Salmo salar L.). We designed full-sibling broods consisting of combinations of homozygote and heterozygote genotypes with respect to resistance or susceptibility alleles. The juveniles were experimentally infected with A. salmonicida and their individual survival was monitored. By comparing full siblings carrying different MHC genotypes the effects on survival due to other segregating genes were minimized. We show that a pathogen has the potential to cause very intense selection pressure on particular MHC alleles; the relative fitness difference between individuals carrying different MHC alleles was as high as 0.5. A co-dominant pattern of disease resistance/susceptibility was found, indicative of qualitative difference in the immune response between individuals carrying the high- and low-resistance alleles. Rather unexpectedly, survival was not higher among heterozygous individuals as compared with homozygous ones.
Full Text
The Full Text of this article is available as a PDF (96.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apanius V., Penn D., Slev P. R., Ruff L. R., Potts W. K. The nature of selection on the major histocompatibility complex. Crit Rev Immunol. 1997;17(2):179–224. doi: 10.1615/critrevimmunol.v17.i2.40. [DOI] [PubMed] [Google Scholar]
- Bingulac-Popovic J., Figueroa F., Sato A., Talbot W. S., Johnson S. L., Gates M., Postlethwait J. H., Klein J. Mapping of mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics. 1997;46(2):129–134. doi: 10.1007/s002510050251. [DOI] [PubMed] [Google Scholar]
- Briles W. E., Briles R. W., Taffs R. E., Stone H. A. Resistance to a malignant lymphoma in chickens is mapped to subregion of major histocompatibility (B) complex. Science. 1983 Feb 25;219(4587):977–979. doi: 10.1126/science.6823560. [DOI] [PubMed] [Google Scholar]
- Carrington M., Nelson G. W., Martin M. P., Kissner T., Vlahov D., Goedert J. J., Kaslow R., Buchbinder S., Hoots K., O'Brien S. J. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999 Mar 12;283(5408):1748–1752. doi: 10.1126/science.283.5408.1748. [DOI] [PubMed] [Google Scholar]
- Clarke B., Kirby D. R. Maintenance of histocompatibility polymorphisms. Nature. 1966 Aug 27;211(5052):999–1000. doi: 10.1038/211999a0. [DOI] [PubMed] [Google Scholar]
- Flajnik M. F., Ohta Y., Namikawa-Yamada C., Nonaka M. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev. 1999 Feb;167:59–67. doi: 10.1111/j.1600-065x.1999.tb01382.x. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D., Axelrod R., Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. doi: 10.1073/pnas.87.9.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. doi: 10.1038/352595a0. [DOI] [PubMed] [Google Scholar]
- Langefors A., Lohm J., Grahn M., Andersen O., von Schantz T. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc Biol Sci. 2001 Mar 7;268(1466):479–485. doi: 10.1098/rspb.2000.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langefors A., Lohm J., Von Schantz T., Grahn M. Screening of Mhc variation in Atlantic salmon (Salmo salar): a comparison of restriction fragment length polymorphism (RFLP), denaturing gradient gel electrophoresis (DGGE) and sequencing. Mol Ecol. 2000 Feb;9(2):215–219. doi: 10.1046/j.1365-294x.2000.00838.x. [DOI] [PubMed] [Google Scholar]
- Medina E., North R. J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology. 1998 Feb;93(2):270–274. doi: 10.1046/j.1365-2567.1998.00419.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson S., Wilson K., Pemberton J. M. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3714–3719. doi: 10.1073/pnas.95.7.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato A., Figueroa F., Murray B. W., Málaga-Trillo E., Zaleska-Rutczynska Z., Sültmann H., Toyosawa S., Wedekind C., Steck N., Klein J. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics. 2000 Feb;51(2):108–116. doi: 10.1007/s002510050019. [DOI] [PubMed] [Google Scholar]
- Takahata N., Satta Y., Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics. 1992 Apr;130(4):925–938. doi: 10.1093/genetics/130.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thursz M. R., Thomas H. C., Greenwood B. M., Hill A. V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat Genet. 1997 Sep;17(1):11–12. doi: 10.1038/ng0997-11. [DOI] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]