Abstract
Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed.
Full Text
The Full Text of this article is available as a PDF (210.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Anthony N., Rocheleau T., Mocelin G., Lee H. J., ffrench-Constant R. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett. 1995 Jul 24;368(3):461–465. doi: 10.1016/0014-5793(95)00711-h. [DOI] [PubMed] [Google Scholar]
- Baxter G. D., Barker S. C. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance. Insect Biochem Mol Biol. 1998 Aug;28(8):581–589. doi: 10.1016/s0965-1748(98)00034-4. [DOI] [PubMed] [Google Scholar]
- Berticat Claire, Boquien Grégoire, Raymond Michel, Chevillon Christine. Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res. 2002 Feb;79(1):41–47. doi: 10.1017/s001667230100547x. [DOI] [PubMed] [Google Scholar]
- Bourguet D., Raymond M., Fournier D., Malcolm C. A., Toutant J. P., Arpagaus M. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem. 1996 Nov;67(5):2115–2123. doi: 10.1046/j.1471-4159.1996.67052115.x. [DOI] [PubMed] [Google Scholar]
- Bourguet D., Roig A., Toutant J. P., Arpagaus M. Analysis of molecular forms and pharmacological properties of acetylcholinesterase in several mosquito species. Neurochem Int. 1997 Jul;31(1):65–72. doi: 10.1016/s0197-0186(96)00118-0. [DOI] [PubMed] [Google Scholar]
- Chen Z., Newcomb R., Forbes E., McKenzie J., Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol. 2001 Jun 22;31(8):805–816. doi: 10.1016/s0965-1748(00)00186-7. [DOI] [PubMed] [Google Scholar]
- Combes D., Fedon Y., Toutant J. P., Arpagaus M. Acetylcholinesterase genes in the nematode Caenorhabditis elegans. Int Rev Cytol. 2001;209:207–239. doi: 10.1016/s0074-7696(01)09013-1. [DOI] [PubMed] [Google Scholar]
- Culotti J. G., Von Ehrenstein G., Culotti M. R., Russell R. L. A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. Genetics. 1981 Feb;97(2):281–305. doi: 10.1093/genetics/97.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fournier D., Karch F., Bride J. M., Hall L. M., Bergé J. B., Spierer P. Drosophila melanogaster acetylcholinesterase gene. Structure, evolution and mutations. J Mol Biol. 1989 Nov 5;210(1):15–22. doi: 10.1016/0022-2836(89)90287-8. [DOI] [PubMed] [Google Scholar]
- Fournier D., Mutero A., Pralavorio M., Bride J. M. Drosophila acetylcholinesterase: mechanisms of resistance to organophosphates. Chem Biol Interact. 1993 Jun;87(1-3):233–238. doi: 10.1016/0009-2797(93)90047-3. [DOI] [PubMed] [Google Scholar]
- Gao J-R, Kambhampati S., Zhu K. Y. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochem Mol Biol. 2002 Jul;32(7):765–775. doi: 10.1016/s0965-1748(01)00159-x. [DOI] [PubMed] [Google Scholar]
- Georghiou G. P., Metcalf R. L., Gidden F. E. Carbamate-resistance in mosquitos. Selection of Culex pipiens fatigans Wiedemann (=C. quinquefasciatus Say) for resistance to Baygon. Bull World Health Organ. 1966;35(5):691–708. [PMC free article] [PubMed] [Google Scholar]
- Grauso M., Culetto E., Combes D., Fedon Y., Toutant J. P., Arpagaus M. Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett. 1998 Mar 13;424(3):279–284. doi: 10.1016/s0014-5793(98)00191-4. [DOI] [PubMed] [Google Scholar]
- Greenspan R. J., Finn J. A., Jr, Hall J. C. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. J Comp Neurol. 1980 Feb 15;189(4):741–774. doi: 10.1002/cne.901890409. [DOI] [PubMed] [Google Scholar]
- Hall J. C., Kankel D. R. Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics. 1976 Jul;83(3 PT2):517–535. [PMC free article] [PubMed] [Google Scholar]
- Hall L. M., Spierer P. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J. 1986 Nov;5(11):2949–2954. doi: 10.1002/j.1460-2075.1986.tb04591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez R., He H., Chen A. C., Ivie G. W., George J. E., Wagner G. G. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J Med Entomol. 1999 Nov;36(6):764–770. doi: 10.1093/jmedent/36.6.764. [DOI] [PubMed] [Google Scholar]
- Hoffmann F., Fournier D., Spierer P. Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster. J Mol Biol. 1992 Jan 5;223(1):17–22. doi: 10.1016/0022-2836(92)90710-2. [DOI] [PubMed] [Google Scholar]
- Johnson C. D., Duckett J. G., Culotti J. G., Herman R. K., Meneely P. M., Russell R. L. An acetylcholinesterase-deficient mutant of the nematode Caenorhabditis elegans. Genetics. 1981 Feb;97(2):261–279. doi: 10.1093/genetics/97.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozaki T., Shono T., Tomita T., Kono Y. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol. 2001 Sep;31(10):991–997. doi: 10.1016/s0965-1748(01)00047-9. [DOI] [PubMed] [Google Scholar]
- Lee D. L. Why do some nematode parasites of the alimentary tract secrete acetylcholinesterase? Int J Parasitol. 1996 May;26(5):499–508. doi: 10.1016/0020-7519(96)00040-9. [DOI] [PubMed] [Google Scholar]
- Lenormand T., Bourguet D., Guillemaud T., Raymond M. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature. 1999 Aug 26;400(6747):861–864. doi: 10.1038/23685. [DOI] [PubMed] [Google Scholar]
- Malcolm C. A., Bourguet D., Ascolillo A., Rooker S. J., Garvey C. F., Hall L. M., Pasteur N., Raymond M. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol. 1998 May;7(2):107–120. doi: 10.1046/j.1365-2583.1998.72055.x. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
- Mori A., Tomita T., Hidoh O., Kono Y., Severson D. W. Comparative linkage map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in Culex tritaeniorhynchus. Insect Mol Biol. 2001 Jun;10(3):197–203. doi: 10.1046/j.1365-2583.2001.00255.x. [DOI] [PubMed] [Google Scholar]
- Mutero A., Pralavorio M., Bride J. M., Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5922–5926. doi: 10.1073/pnas.91.13.5922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond M., Berticat C., Weill M., Pasteur N., Chevillon C. Insecticide resistance in the mosquito culex pipiens: what have we learned about adaptation? Genetica. 2001;112-113:287–296. [PubMed] [Google Scholar]
- Severson D. W., Anthony N. M., Andreev O., ffrench-Constant R. H. Molecular mapping of insecticide resistance genes in the yellow fever mosquito (Aedes aegypti). J Hered. 1997 Nov-Dec;88(6):520–524. doi: 10.1093/oxfordjournals.jhered.a023148. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T., Hidoh O., Kono Y. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochem Mol Biol. 2000 Apr;30(4):325–333. doi: 10.1016/s0965-1748(00)00006-0. [DOI] [PubMed] [Google Scholar]
- Toutant J. P. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 1989;32(5):423–446. doi: 10.1016/0301-0082(89)90031-2. [DOI] [PubMed] [Google Scholar]
- Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
- Walsh S. B., Dolden T. A., Moores G. D., Kristensen M., Lewis T., Devonshire A. L., Williamson M. S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J. 2001 Oct 1;359(Pt 1):175–181. doi: 10.1042/0264-6021:3590175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu K. Y., Clark J. M. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 1995 Dec;25(10):1129–1138. doi: 10.1016/0965-1748(95)00055-0. [DOI] [PubMed] [Google Scholar]
- Zhu KY, Lee SH, Clark JM. A Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle. Pestic Biochem Physiol. 1996 Jun;55(2):100–108. doi: 10.1006/pest.1996.0039. [DOI] [PubMed] [Google Scholar]