Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Nov 7;269(1506):2257–2267. doi: 10.1098/rspb.2002.2100

The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure.

D DeWayne Shoemaker 1, Carlos A Machado 1, Drude Molbo 1, John H Werren 1, Donald M Windsor 1, Edward Allen Herre 1
PMCID: PMC1691153  PMID: 12427319

Abstract

We surveyed for the presence and identity of Wolbachia in 44 species of chalcid wasps associated with 18 species of Panamanian figs. We used existing detailed knowledge of the population structures of the host wasps, as well as the ecological and evolutionary relationships among them, to explore the relevance of each of these factors to Wolbachia prevalence and mode of transmission. Fifty-nine per cent of these wasp species have Wolbachia infections, the highest proportion reported for any group of insects. Further, neither the presence nor the frequency of Wolbachia within hosts was correlated with the population structure of pollinator hosts. Phylogenetic analyses of wsp sequence data from 70 individuals representing 22 wasp species show that neither the close phylogenetic relationship nor close ecological association among host species is consistently linked to close phylogenetic affinities of the Wolbachia associated with them. Moreover, no genetic variation was detected within any Wolbachia strain from a given host species. Thus, the spread of Wolbachia within host species exceeds the rate of horizontal transmission among species and both exceed the rate of mutation of the wsp gene in Wolbachia. The presence and, in some cases, high frequency of Wolbachia infections within highly inbred species indicate that the Wolbachia either directly increase host fitness or are frequently horizontally transferred within these wasp species. However, the paucity of cospeciation of Wolbachia and their wasp hosts indicates that Wolbachia do not persist within a given host lineage for long time-periods relative to speciation times.

Full Text

The Full Text of this article is available as a PDF (158.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandi C., Anderson T. J., Genchi C., Blaxter M. L. Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci. 1998 Dec 22;265(1413):2407–2413. doi: 10.1098/rspb.1998.0591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beard C. B., O'Neill S. L., Tesh R. B., Richards F. F., Aksoy S. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today. 1993 May;9(5):179–183. doi: 10.1016/0169-4758(93)90142-3. [DOI] [PubMed] [Google Scholar]
  3. Bourtzis K., Nirgianaki A., Markakis G., Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics. 1996 Nov;144(3):1063–1073. doi: 10.1093/genetics/144.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braig H. R., Zhou W., Dobson S. L., O'Neill S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol. 1998 May;180(9):2373–2378. doi: 10.1128/jb.180.9.2373-2378.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  6. Dedeine F., Vavre F., Fleury F., Loppin B., Hochberg M. E., Bouletreau M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6247–6252. doi: 10.1073/pnas.101304298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  8. Herre E. A. Sex ratio adjustment in fig wasps. Science. 1985 May 17;228(4701):896–898. doi: 10.1126/science.228.4701.896. [DOI] [PubMed] [Google Scholar]
  9. Huigens M. E., Luck R. F., Klaassen R. H., Maas M. F., Timmermans M. J., Stouthamer R. Infectious parthenogenesis. Nature. 2000 May 11;405(6783):178–179. doi: 10.1038/35012066. [DOI] [PubMed] [Google Scholar]
  10. Hurst G. D., Hammarton T. C., Obrycki J. J., Majerus T. M., Walker L. E., Bertrand D., Majerus M. E. Male-killing bacterium in a fifth ladybird beetle, Coleomegilla maculata (Coleoptera:Coccinellidae). Heredity (Edinb) 1996 Aug;77(Pt 2):177–185. doi: 10.1038/hdy.1996.122. [DOI] [PubMed] [Google Scholar]
  11. Jiggins F. M., von Der Schulenburg J. H., Hurst G. D., Majerus M. E. Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci. 2001 Jul 7;268(1474):1423–1427. doi: 10.1098/rspb.2001.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Machado C. A., Jousselin E., Kjellberg F., Compton S. G., Herre E. A. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc Biol Sci. 2001 Apr 7;268(1468):685–694. doi: 10.1098/rspb.2000.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. doi: 10.1098/rspb.1999.0698. [DOI] [PMC free article] [Google Scholar]
  15. Schilthuizen M., Gittenberger E. Screening mollusks for Wolbachia infection. J Invertebr Pathol. 1998 May;71(3):268–270. doi: 10.1006/jipa.1997.4739. [DOI] [PubMed] [Google Scholar]
  16. Schilthuizen M., Stouthamer R. Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc Biol Sci. 1997 Mar 22;264(1380):361–366. doi: 10.1098/rspb.1997.0052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schulenburg J. H., Hurst G. D., Huigens T. M., van Meer M. M., Jiggins F. M., Majerus M. E. Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol. 2000 Apr;17(4):584–600. doi: 10.1093/oxfordjournals.molbev.a026338. [DOI] [PubMed] [Google Scholar]
  18. Shoemaker D. D., Ross K. G., Keller L., Vargo E. L., Werren J. H. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol Biol. 2000 Dec;9(6):661–673. doi: 10.1046/j.1365-2583.2000.00233.x. [DOI] [PubMed] [Google Scholar]
  19. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol. 1995 Nov;81(3):284–291. doi: 10.1006/expr.1995.1119. [DOI] [PubMed] [Google Scholar]
  20. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  21. Stouthamer R., Breeuwer J. A., Hurst G. D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71–102. doi: 10.1146/annurev.micro.53.1.71. [DOI] [PubMed] [Google Scholar]
  22. Van Meer M. M., Witteveldt J., Stouthamer R. Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol. 1999 Aug;8(3):399–408. doi: 10.1046/j.1365-2583.1999.83129.x. [DOI] [PubMed] [Google Scholar]
  23. Vavre F., Fleury F., Lepetit D., Fouillet P., Boulétreau M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol. 1999 Dec;16(12):1711–1723. doi: 10.1093/oxfordjournals.molbev.a026084. [DOI] [PubMed] [Google Scholar]
  24. Wade M. J., Chang N. W. Increased male fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature. 1995 Jan 5;373(6509):72–74. doi: 10.1038/373072a0. [DOI] [PubMed] [Google Scholar]
  25. Wade M. J., Stevens L. The effect of population subdivision on the rate of spread of parasite-mediated cytoplasmic incompatibility. J Theor Biol. 1994 Mar 7;167(1):81–87. doi: 10.1006/jtbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  26. Wenseleers T., Ito F., Van Borm S., Huybrechts R., Volckaert F., Billen J. Widespread occurrence of the micro-organism Wolbachia in ants. Proc Biol Sci. 1998 Aug 7;265(1404):1447–1452. doi: 10.1098/rspb.1998.0456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Werren J. H., Bartos J. D. Recombination in Wolbachia. Curr Biol. 2001 Mar 20;11(6):431–435. doi: 10.1016/s0960-9822(01)00101-4. [DOI] [PubMed] [Google Scholar]
  28. Werren J. H. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. [DOI] [PubMed] [Google Scholar]
  29. Werren J. H., Jaenike J. Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity (Edinb) 1995 Sep;75(Pt 3):320–326. doi: 10.1038/hdy.1995.140. [DOI] [PubMed] [Google Scholar]
  30. Werren J. H., Windsor D. M. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci. 2000 Jul 7;267(1450):1277–1285. doi: 10.1098/rspb.2000.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. West S. A., Cook J. M., Werren J. H., Godfray H. C. Wolbachia in two insect host-parasitoid communities. Mol Ecol. 1998 Nov;7(11):1457–1465. doi: 10.1046/j.1365-294x.1998.00467.x. [DOI] [PubMed] [Google Scholar]
  32. Zhou W., Rousset F., O'Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998 Mar 22;265(1395):509–515. doi: 10.1098/rspb.1998.0324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES