Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Nov 7;269(1506):2269–2276. doi: 10.1098/rspb.2002.2148

Programmed cell death correlates with virus transmission in a filamentous fungus.

Silvia Biella 1, Myron L Smith 1, James R Aist 1, Paolo Cortesi 1, Michael G Milgroom 1
PMCID: PMC1691157  PMID: 12455515

Abstract

Programmed cell death (PCD) is an essential part of the defence response in plants and animals against pathogens. Here, we report that PCD is also involved in defence against pathogens of fungi. Vegetative incompatibility is a self/non-self recognition system in fungi that results in PCD when cells of incompatible strains fuse. We quantified the frequency of cell death associated with six vegetative incompatibility (vic) genes in the filamentous ascomycete fungus Cryphonectria parasitica. Cell death frequencies were compared with the effects of vic genes on transmission of viruses between the same strains. We found a significant negative correlation between cell death and virus transmission. We also show that asymmetry in cell death correlates with asymmetry in virus transmission; greater transmission occurs into vic genotypes that exhibit delayed or infrequent PCD after fusion with an incompatible strain. Furthermore, we found that virus infection can have a significant, strain-specific, positive or negative effect on PCD. Specific interactions between vic gene function and viruses, along with correlations between cell death and transmission, strongly implicate PCD as a host-mediated pathogen defence strategy in fungi.

Full Text

The Full Text of this article is available as a PDF (326.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aravind L., Dixit V. M., Koonin E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci. 1999 Feb;24(2):47–53. doi: 10.1016/s0968-0004(98)01341-3. [DOI] [PubMed] [Google Scholar]
  2. Baidyaroy D., Glynn J. M., Bertrand H. Dynamics of asexual transmission of a mitochondrial plasmid in Cryphonectria parasitica. Curr Genet. 2000 Apr;37(4):257–267. doi: 10.1007/s002940050527. [DOI] [PubMed] [Google Scholar]
  3. Brodersen Peter, Petersen Morten, Pike Helen M., Olszak Brian, Skov Søren, Odum Niels, Jørgensen Lise Bolt, Brown Rhoderick E., Mundy John. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 2002 Feb 15;16(4):490–502. doi: 10.1101/gad.218202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caten C. E. Vegetative incompatibility and cytoplasmic infection in fungi. J Gen Microbiol. 1972 Sep;72(2):221–229. doi: 10.1099/00221287-72-2-221. [DOI] [PubMed] [Google Scholar]
  5. Clark J., Collins O. R. Directional Cytotoxic Reactions between Incompatible Plasmodia of DIDYMIUM IRIDIS. Genetics. 1973 Feb;73(2):247–257. doi: 10.1093/genetics/73.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coenen A., Debets F., Hoekstra R. Additive action of partial heterokaryon incompatibility (partial-het) genes in Aspergillus nidulans. Curr Genet. 1994 Sep;26(3):233–237. doi: 10.1007/BF00309553. [DOI] [PubMed] [Google Scholar]
  7. Cortesi P., McCulloch C. E., Song H., Lin H., Milgroom M. G. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics. 2001 Sep;159(1):107–118. doi: 10.1093/genetics/159.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cortesi P, Milgroom MG. Genetics of vegetative incompatibility in cryphonectria parasitica . Appl Environ Microbiol. 1998 Aug;64(8):2988–2994. doi: 10.1128/aem.64.8.2988-2994.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garnjobst L., Wilson J. F. HETEROCARYOSIS AND PROTOPLASMIC INCOMPATIBILITY IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1956 Sep;42(9):613–618. doi: 10.1073/pnas.42.9.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glass N. L., Jacobson D. J., Shiu P. K. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet. 2000;34:165–186. doi: 10.1146/annurev.genet.34.1.165. [DOI] [PubMed] [Google Scholar]
  11. Hartl D. L., Dempster E. R., Brown S. W. Adaptive significance of vegetative incompatibility in Neurospora crassa. Genetics. 1975 Nov;81(3):553–569. doi: 10.1093/genetics/81.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobson DJ, Beurkens K, Klomparens KL. Microscopic and Ultrastructural Examination of Vegetative Incompatibility in Partial Diploids Heterozygous at het Loci in Neurospora crassa. Fungal Genet Biol. 1998 Feb;23(1):45–56. doi: 10.1006/fgbi.1997.1020. [DOI] [PubMed] [Google Scholar]
  13. Labarére J., Bègueret J., Bernet J. Incompatibility in Podospora anserina: comparative properties of the antagonistic cytoplasmic factors of a nonallelic system. J Bacteriol. 1974 Nov;120(2):854–860. doi: 10.1128/jb.120.2.854-860.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lam E., Kato N., Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature. 2001 Jun 14;411(6839):848–853. doi: 10.1038/35081184. [DOI] [PubMed] [Google Scholar]
  15. Nuss D. L. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev. 1992 Dec;56(4):561–576. doi: 10.1128/mr.56.4.561-576.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poulin R. Manipulation of host behaviour by parasites: a weakening paradigm? Proc Biol Sci. 2000 Apr 22;267(1445):787–792. doi: 10.1098/rspb.2000.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roulston A., Marcellus R. C., Branton P. E. Viruses and apoptosis. Annu Rev Microbiol. 1999;53:577–628. doi: 10.1146/annurev.micro.53.1.577. [DOI] [PubMed] [Google Scholar]
  18. Saupe S. J., Clavé C., Bégueret J. Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol. 2000 Dec;3(6):608–612. doi: 10.1016/s1369-5274(00)00148-x. [DOI] [PubMed] [Google Scholar]
  19. Saupe S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev. 2000 Sep;64(3):489–502. doi: 10.1128/mmbr.64.3.489-502.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saupe S., Descamps C., Turcq B., Bégueret J. Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5927–5931. doi: 10.1073/pnas.91.13.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Alfen N. K., Jaynes R. A., Anagnostakis S. L., Day P. R. Chestnut Blight: Biological Control by Transmissible Hypovirulence in Endothia parasitica. Science. 1975 Sep 12;189(4206):890–891. doi: 10.1126/science.189.4206.890. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES