Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Dec 7;269(1508):2467–2472. doi: 10.1098/rspb.2002.2152

The period gene and allochronic reproductive isolation in Bactrocera cucurbitae.

Takahisa Miyatake 1, Akira Matsumoto 1, Takashi Matsuyama 1, Hiroki R Ueda 1, Tetsuya Toyosato 1, Teiichi Tanimura 1
PMCID: PMC1691176  PMID: 12495490

Abstract

Clock genes that pleiotropically control circadian rhythm and the time of mating may cause allochronic reproductive isolation in the melon fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Flies with a shorter circadian period (ca. 22 h of locomotor activity rhythm) mated 5 h earlier in the day than those with a longer circadian period (ca. 30 h). Mate-choice tests demonstrated significant pre-mating isolation between populations with short and long circadian periods. Pre-mating isolation did not occur when the mating time was synchronized between the two populations by photoperiodic controls, indicating that reproductive isolation is due to variations in the time of mating and not any unidentified ethological difference between the two populations. We cloned the period (per) gene of B. cucurbitae that is homologous to the per gene in Drosophila. The relative level of per mRNA in the melon fly exhibited a robust daily fluctuation under light : dark conditions. The fluctuation of per expression under dark : dark conditions is closely correlated to the locomotor rhythm in B. cucurbitae. These results suggest that clock genes can cause reproductive isolation via the pleiotropic effect as a change of mating time.

Full Text

The Full Text of this article is available as a PDF (238.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlocher Stewart H., Feder Jeffrey L. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol. 2002;47:773–815. doi: 10.1146/annurev.ento.47.091201.145312. [DOI] [PubMed] [Google Scholar]
  2. Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
  3. Giebultowicz J. M. Molecular mechanism and cellular distribution of insect circadian clocks. Annu Rev Entomol. 2000;45:769–793. doi: 10.1146/annurev.ento.45.1.769. [DOI] [PubMed] [Google Scholar]
  4. Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
  5. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  6. Kyriacou C. P., Hall J. C. Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6729–6733. doi: 10.1073/pnas.77.11.6729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kyriacou C. P., Oldroyd M., Wood J., Sharp M., Hill M. Clock mutations alter developmental timing in Drosophila. Heredity (Edinb) 1990 Jun;64(Pt 3):395–401. doi: 10.1038/hdy.1990.50. [DOI] [PubMed] [Google Scholar]
  8. Matsumoto A., Motoshige T., Murata T., Tomioka K., Tanimura T., Chiba Y. Chronobiological analysis of a new clock mutant, Toki, in Drosophila melanogaster. J Neurogenet. 1994 Jul;9(3):141–155. doi: 10.3109/01677069409167276. [DOI] [PubMed] [Google Scholar]
  9. Miyatake T. Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms. Behav Genet. 1997 Sep;27(5):489–498. doi: 10.1023/a:1025682618895. [DOI] [PubMed] [Google Scholar]
  10. Panda Satchidananda, Hogenesch John B., Kay Steve A. Circadian rhythms from flies to human. Nature. 2002 May 16;417(6886):329–335. doi: 10.1038/417329a. [DOI] [PubMed] [Google Scholar]
  11. Reppert S. M., Tsai T., Roca A. L., Sauman I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron. 1994 Nov;13(5):1167–1176. doi: 10.1016/0896-6273(94)90054-x. [DOI] [PubMed] [Google Scholar]
  12. Sakai T., Ishida N. Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9221–9225. doi: 10.1073/pnas.151443298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stalker H D. Sexual Isolation Studies in the Species Complex Drosophila Virilis. Genetics. 1942 Mar;27(2):238–257. doi: 10.1093/genetics/27.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol. 2001 Jul 1;16(7):381–390. doi: 10.1016/s0169-5347(01)02188-7. [DOI] [PubMed] [Google Scholar]
  15. Wong A., Boutis P., Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES