Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Dec 7;269(1508):2429–2435. doi: 10.1098/rspb.2002.2175

How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence.

Jonathan P Price 1, David A Clague 1
PMCID: PMC1691179  PMID: 12495485

Abstract

This study quantifies long-term landscape changes in the Hawaiian archipelago relating to dispersal, speciation and extinction. Accounting for volcano growth, subsidence and erosion, we modelled the elevations of islands at time intervals of 0.5 Myr for the last 32 Myr; we also assessed the variation in the spacing of volcanoes during this period. The size, spacing and total number of volcanic islands have varied greatly over time, with the current landscape of large, closely spaced islands preceded by a period with smaller, more distantly spaced islands. Considering associated changes in rates of dispersal and speciation, much of the present species pool is probably the result of recent colonization from outside the archipelago and divergence within contemporary islands, with limited dispersal from older islands. This view is in accordance with abundant phylogenetic studies of Hawaiian organisms that estimate the timing of colonization and divergence within the archipelago. Twelve out of 15 multi-species lineages have diverged within the lifetime of the current high islands (last 5 Myr). Three of these, and an additional seven (mostly single-species) lineages, have colonized the archipelago within this period. The timing of colonization of other lineages remains uncertain.

Full Text

The Full Text of this article is available as a PDF (171.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin B. G., Sanderson M. J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9402–9406. doi: 10.1073/pnas.95.16.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballard H. E., Jr, Sytsma K. J. Evolution and biogeography of the woody Hawaiian violets (Viola, Violaceae): arctic origins, herbaceous ancestry and bird dispersal. Evolution. 2000 Oct;54(5):1521–1532. doi: 10.1111/j.0014-3820.2000.tb00698.x. [DOI] [PubMed] [Google Scholar]
  3. Beverley S. M., Wilson A. C. Ancient origin for Hawaiian Drosophilinae inferred from protein comparisons. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4753–4757. doi: 10.1073/pnas.82.14.4753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carson H. L. Chromosomal sequences and interisland colonizations in hawaiian Drosophila. Genetics. 1983 Mar;103(3):465–482. doi: 10.1093/genetics/103.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis T. On the relationship between the Scaptomyza and the Hawaiian Drosophila. Hereditas. 2000;132(3):257–259. doi: 10.1111/j.1601-5223.2000.00257.x. [DOI] [PubMed] [Google Scholar]
  6. DeSalle R. The origin and possible time of divergence of the Hawaiian Drosophilidae: evidence from DNA sequences. Mol Biol Evol. 1992 Sep;9(5):905–916. doi: 10.1093/oxfordjournals.molbev.a040767. [DOI] [PubMed] [Google Scholar]
  7. Fleischer R. C., McIntosh C. E., Tarr C. L. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol. 1998 Apr;7(4):533–545. doi: 10.1046/j.1365-294x.1998.00364.x. [DOI] [PubMed] [Google Scholar]
  8. Gemmill C. E. C., Allan G. J., Wagner W. L., Zimmer E. A. Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation. Mol Phylogenet Evol. 2002 Jan;22(1):31–42. doi: 10.1006/mpev.2001.1019. [DOI] [PubMed] [Google Scholar]
  9. Losos J. B., Schluter D. Analysis of an evolutionary species-area relationship. Nature. 2000 Dec 14;408(6814):847–850. doi: 10.1038/35048558. [DOI] [PubMed] [Google Scholar]
  10. Moore J. G., Normark W. R., Holcomb R. T. Giant hawaiian underwater landslides. Science. 1994 Apr 1;264(5155):46–47. doi: 10.1126/science.264.5155.46. [DOI] [PubMed] [Google Scholar]
  11. Raup D. M. Taxonomic Diversity during the Phanerozoic. Science. 1972 Sep 22;177(4054):1065–1071. doi: 10.1126/science.177.4054.1065. [DOI] [PubMed] [Google Scholar]
  12. Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
  13. Sorenson M. D., Cooper A., Paxinos E. E., Quinn T. W., James H. F., Olson S. L., Fleischer R. C. Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proc Biol Sci. 1999 Nov 7;266(1434):2187–2193. doi: 10.1098/rspb.1999.0907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thomas R. H., Hunt J. A. The molecular evolution of the alcohol dehydrogenase locus and the phylogeny of Hawaiian Drosophila. Mol Biol Evol. 1991 Sep;8(5):687–702. doi: 10.1093/oxfordjournals.molbev.a040678. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES