Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Dec 7;269(1508):2479–2485. doi: 10.1098/rspb.2002.2180

Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings.

Keith W Sockman 1, Timothy Q Gentner 1, Gregory F Ball 1
PMCID: PMC1691185  PMID: 12495492

Abstract

Mate-choice decisions can be experience dependent, but we know little about how the brain processes stimuli that release such decisions. Female European starlings (Sturnus vulgaris) prefer males with long-bout songs over males with short-bout songs, and show higher expression of the immediate early gene (IEG) ZENK in the auditory forebrain when exposed to long-bout songs than when exposed to short-bout songs. We exposed female starlings to a short-day photoperiod for one of three durations and then, on an increased photophase, exposed them to one week of long-bout or short-bout song experience. We then examined their IEG response to novel long-bout versus novel short-bout songs by quantifying ZENK protein in two song-processing areas: the caudo-medial hyperstriatum ventrale and the caudo-medial neostriatum. ZENK expression in both areas increased with tenure on short-day photoperiods, suggesting that short days sensitize females to song. The ZENK response bias toward long-bout songs was greater in females with long-bout experience than in females with short-bout experience, indicating that the forebrain response bias toward a preferred trait depends on recent experience with that category of trait. This surprising level of neuroplasticity is immediately relevant to the natural history and fitness of the organism, and may underlie a mechanism for optimizing mate-choice criteria amidst locally variable distributions of secondary sexual characteristics.

Full Text

The Full Text of this article is available as a PDF (351.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball G. F., Balthazar J. Ethological concepts revisited: immediate early gene induction in response to sexual stimuli in birds. Brain Behav Evol. 2001 May;57(5):252–270. doi: 10.1159/000047244. [DOI] [PubMed] [Google Scholar]
  2. Bolhuis J. J., Zijlstra G. G., den Boer-Visser A. M., Van Der Zee E. A. Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2282–2285. doi: 10.1073/pnas.030539097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chew S. J., Mello C., Nottebohm F., Jarvis E., Vicario D. S. Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3406–3410. doi: 10.1073/pnas.92.8.3406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clayton D. F. The genomic action potential. Neurobiol Learn Mem. 2000 Nov;74(3):185–216. doi: 10.1006/nlme.2000.3967. [DOI] [PubMed] [Google Scholar]
  5. Dawson A. Effect of daylength on the rate of recovery of photosensitivity in male starlings (Sturnus vulgaris). J Reprod Fertil. 1991 Nov;93(2):521–524. doi: 10.1530/jrf.0.0930521. [DOI] [PubMed] [Google Scholar]
  6. Duffy Deborah L., Ball Gregory F. Song predicts immunocompetence in male European starlings (Sturnus vulgaris). Proc Biol Sci. 2002 Apr 22;269(1493):847–852. doi: 10.1098/rspb.2002.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gentner T. Q., Hulse S. H., Duffy D., Ball G. F. Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. J Neurobiol. 2001 Jan;46(1):48–58. doi: 10.1002/1097-4695(200101)46:1<48::aid-neu5>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  8. Gentner TQ, Hulse SH. Female European starling preference and choice for variation in conspecific male song. Anim Behav. 2000 Feb;59(2):443–458. doi: 10.1006/anbe.1999.1313. [DOI] [PubMed] [Google Scholar]
  9. Jones M. W., Errington M. L., French P. J., Fine A., Bliss T. V., Garel S., Charnay P., Bozon B., Laroche S., Davis S. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci. 2001 Mar;4(3):289–296. doi: 10.1038/85138. [DOI] [PubMed] [Google Scholar]
  10. Kroodsma D. E. Reproductive development in a female songbird: differential stimulation by quality of male song. Science. 1976 May 7;192(4239):574–575. doi: 10.1126/science.192.4239.574. [DOI] [PubMed] [Google Scholar]
  11. Mello C. V., Vicario D. S., Clayton D. F. Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6818–6822. doi: 10.1073/pnas.89.15.6818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mello C., Nottebohm F., Clayton D. Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. J Neurosci. 1995 Oct;15(10):6919–6925. doi: 10.1523/JNEUROSCI.15-10-06919.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicholls T. J., Goldsmith A. R., Dawson A. Photorefractoriness in birds and comparison with mammals. Physiol Rev. 1988 Jan;68(1):133–176. doi: 10.1152/physrev.1988.68.1.133. [DOI] [PubMed] [Google Scholar]
  14. Ribeiro S., Cecchi G. A., Magnasco M. O., Mello C. V. Toward a song code: evidence for a syllabic representation in the canary brain. Neuron. 1998 Aug;21(2):359–371. doi: 10.1016/s0896-6273(00)80545-0. [DOI] [PubMed] [Google Scholar]
  15. Ryan M. J., Fox J. H., Wilczynski W., Rand A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature. 1990 Jan 4;343(6253):66–67. doi: 10.1038/343066a0. [DOI] [PubMed] [Google Scholar]
  16. Ryan M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science. 1998 Sep 25;281(5385):1999–2003. doi: 10.1126/science.281.5385.1999. [DOI] [PubMed] [Google Scholar]
  17. Sen K., Theunissen F. E., Doupe A. J. Feature analysis of natural sounds in the songbird auditory forebrain. J Neurophysiol. 2001 Sep;86(3):1445–1458. doi: 10.1152/jn.2001.86.3.1445. [DOI] [PubMed] [Google Scholar]
  18. Stripling R., Volman S. F., Clayton D. F. Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. J Neurosci. 1997 May 15;17(10):3883–3893. doi: 10.1523/JNEUROSCI.17-10-03883.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilczynski W., Allison J. D., Marler C. A. Sensory pathways linking social and environmental cues to endocrine control regions of amphibian forebrains. Brain Behav Evol. 1993;42(4-5):252–264. doi: 10.1159/000114159. [DOI] [PubMed] [Google Scholar]
  20. van Gossum H., Stoks R., De Bruyn L. Reversible frequency-dependent switches in male mate choice. Proc Biol Sci. 2001 Jan 7;268(1462):83–85. doi: 10.1098/rspb.2000.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES