Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Jan 22;270(1511):153–158. doi: 10.1098/rspb.2002.2185

Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?

Lynn B Martin 2nd 1, Alex Scheuerlein 1, Martin Wikelski 1
PMCID: PMC1691219  PMID: 12590753

Abstract

The activation of an immune response is beneficial for organisms but may also have costs that affect fitness. Documented immune costs include those associated with acquisition of special nutrients, as well as immunopathology or autoimmunity. Here, we test whether an experimental induction of the immune system with a non-pathological stimulant can elevate energy turnover in passerine birds. We injected phytohaemagglutinin (PHA), a commonly used mitogen that activates the cell-mediated immune response, into the wing web of house sparrows, Passer domesticus. We then examined energetic costs resulting from this immune activity and related those costs to other physiological activities. We found that PHA injection significantly elevated resting metabolic rate (RMR) of challenged sparrows relative to saline controls. We calculated the total cost of this immune activity to be ca. 4.20 kJ per day (29% RMR), which is equivalent to the cost of production of half of an egg (8.23 kJ egg(-1)) in this species. We suggest that immune activity in wild passerines increases energy expenditure, which in turn may influence important life-history characteristics such as clutch size, timing of breeding or the scheduling of moult.

Full Text

The Full Text of this article is available as a PDF (170.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley G. E., Demas G. E., Nelson R. J., Ball G. F. Melatonin, immunity and cost of reproductive state in male European starlings. Proc Biol Sci. 1998 Jul 7;265(1402):1191–1195. doi: 10.1098/rspb.1998.0418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Demas G. E., Chefer V., Talan M. I., Nelson R. J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol. 1997 Nov;273(5 Pt 2):R1631–R1637. doi: 10.1152/ajpregu.1997.273.5.R1631. [DOI] [PubMed] [Google Scholar]
  3. Desjardins P. J., Norris L. H., Cooper S. A., Reynolds D. C. Analgesic efficacy of intranasal butorphanol (Stadol NS) in the treatment of pain after dental impaction surgery. J Oral Maxillofac Surg. 2000 Oct;58(10 Suppl 2):19–26. doi: 10.1053/joms.2000.17884. [DOI] [PubMed] [Google Scholar]
  4. Fair J. M., Hansen E. S., Ricklefs R. E. Growth, developmental stability and immune response in juvenile Japanese quails (Coturnix coturnix japonica). Proc Biol Sci. 1999 Sep 7;266(1430):1735–1742. doi: 10.1098/rspb.1999.0840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goto N., Kodama H., Okada K., Fujimoto Y. Suppression of phytohemagglutinin skin response in thymectomized chickens. Poult Sci. 1978 Jan;57(1):246–250. doi: 10.3382/ps.0570246. [DOI] [PubMed] [Google Scholar]
  6. Ilmonen P., Taarna T., Hasselquist D. Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc Biol Sci. 2000 Apr 7;267(1444):665–670. doi: 10.1098/rspb.2000.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klasing K. C., Laurin D. E., Peng R. K., Fry D. M. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr. 1987 Sep;117(9):1629–1637. doi: 10.1093/jn/117.9.1629. [DOI] [PubMed] [Google Scholar]
  8. Leclère J., Weryha G. Stress and auto-immune endocrine diseases. Horm Res. 1989;31(1-2):90–93. doi: 10.1159/000181094. [DOI] [PubMed] [Google Scholar]
  9. Moret Y., Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000 Nov 10;290(5494):1166–1168. doi: 10.1126/science.290.5494.1166. [DOI] [PubMed] [Google Scholar]
  10. Ots I., Kerimov A. B., Ivankina E. V., Ilyina T. A., Hõrak P. Immune challenge affects basal metabolic activity in wintering great tits. Proc Biol Sci. 2001 Jun 7;268(1472):1175–1181. doi: 10.1098/rspb.2001.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. doi: 10.1098/rspb.1997.0141. [DOI] [PMC free article] [Google Scholar]
  12. doi: 10.1098/rspb.1998.0432. [DOI] [PMC free article] [Google Scholar]
  13. doi: 10.1098/rspb.1999.0750. [DOI] [PMC free article] [Google Scholar]
  14. Råberg L., Grahn M., Hasselquist D., Svensson E. On the adaptive significance of stress-induced immunosuppression. Proc Biol Sci. 1998 Sep 7;265(1406):1637–1641. doi: 10.1098/rspb.1998.0482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SCHOLANDER P. F., HOCK R., WALTERS V., JOHNSON F., IRVING L. Heat regulation in some arctic and tropical mammals and birds. Biol Bull. 1950 Oct;99(2):237–258. doi: 10.2307/1538741. [DOI] [PubMed] [Google Scholar]
  16. Withers P. C. Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan;42(1):120–123. doi: 10.1152/jappl.1977.42.1.120. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES