Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Jan 22;270(1511):159–165. doi: 10.1098/rspb.2002.2214

Female age and sperm competition: last-male precedence declines as female age increases.

Paul D Mack 1, Nicholas K Priest 1, Daniel E L Promislow 1
PMCID: PMC1691224  PMID: 12590754

Abstract

Until very recently, most studies of sperm competition have focused on variation in male competitive ability. However, we now know that a number of reproductive traits, including oviposition rate, use of stored sperm and receptivity to mating, vary with female condition. Because females can play an active part in the movement of sperm within their reproductive tract, sperm competition may be influenced by female condition. Existing studies of sperm competition in fruitflies ignore the effects of female condition, using females that are 3-4 days old and in their reproductive prime. But condition will decline as a female senesces. Here, we examine the effect of female age on the outcome of sperm competition in three strains of the fruitfly, Drosophila melanogaster. Previous studies have shown that female age influences preference for mates and male ejaculation strategies. In this study, we find that when males are mated to females that are older than 17 days, last-male sperm precedence decreases significantly. These results could lead to a greater understanding of the physiological mechanisms that regulate the outcome of sperm competition.

Full Text

The Full Text of this article is available as a PDF (173.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnqvist G, Nilsson T. The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav. 2000 Aug;60(2):145–164. doi: 10.1006/anbe.2000.1446. [DOI] [PubMed] [Google Scholar]
  2. Arnqvist Göran, Rowe Locke. Antagonistic coevolution between the sexes in a group of insects. Nature. 2002 Feb 14;415(6873):787–789. doi: 10.1038/415787a. [DOI] [PubMed] [Google Scholar]
  3. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  4. Chapman T., Neubaum D. M., Wolfner M. F., Partridge L. The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc Biol Sci. 2000 Jun 7;267(1448):1097–1105. doi: 10.1098/rspb.2000.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman T., Partridge L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci. 1996 Jun 22;263(1371):755–759. doi: 10.1098/rspb.1996.0113. [DOI] [PubMed] [Google Scholar]
  6. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark A. G., Begun D. J. Female genotypes affect sperm displacement in Drosophila. Genetics. 1998 Jul;149(3):1487–1493. doi: 10.1093/genetics/149.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark A. G., Begun D. J., Prout T. Female x male interactions in Drosophila sperm competition. Science. 1999 Jan 8;283(5399):217–220. doi: 10.1126/science.283.5399.217. [DOI] [PubMed] [Google Scholar]
  9. Clark A. G., Kao T. H. Excess nonsynonymous substitution of shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9823–9827. doi: 10.1073/pnas.88.21.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danielsson I. Antagonistic pre- and post-copulatory sexual selection on male body size in a water strider (Gerris lacustris). Proc Biol Sci. 2001 Jan 7;268(1462):77–81. doi: 10.1098/rspb.2000.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edvardsson M., Arnqvist G. Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc Biol Sci. 2000 Mar 22;267(1443):559–563. doi: 10.1098/rspb.2000.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilchrist A. S., Partridge L. Why it is difficult to model sperm displacement in Drosophila melanogaster: the relation between sperm transfer and copulation duration. Evolution. 2000 Apr;54(2):534–542. doi: 10.1111/j.0014-3820.2000.tb00056.x. [DOI] [PubMed] [Google Scholar]
  13. Heifetz Y., Lung O., Frongillo E. A., Jr, Wolfner M. F. The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol. 2000 Jan 27;10(2):99–102. doi: 10.1016/s0960-9822(00)00288-8. [DOI] [PubMed] [Google Scholar]
  14. Hellriegel B, Bernasconi G. Female-mediated differential sperm storage in a fly with complex spermathecae, Scatophaga stercoraria. Anim Behav. 2000 Feb;59(2):311–317. doi: 10.1006/anbe.1999.1308. [DOI] [PubMed] [Google Scholar]
  15. Hodin J., Riddiford L. M. Different mechanisms underlie phenotypic plasticity and interspecific variation for a reproductive character in drosophilids (Insecta: Diptera). Evolution. 2000 Oct;54(5):1638–1653. doi: 10.1111/j.0014-3820.2000.tb00708.x. [DOI] [PubMed] [Google Scholar]
  16. Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Imhof M., Harr B., Brem G., Schlötterer C. Multiple mating in wild Drosophila melanogaster revisited by microsatellite analysis. Mol Ecol. 1998 Jul;7(7):915–917. doi: 10.1046/j.1365-294x.1998.00382.x. [DOI] [PubMed] [Google Scholar]
  18. Leopold R. A., Terranova A. C., Swilley E. M. Mating refusal in Musca domestica: effects of repeated mating and decerebration upon frequency and duration of copulation. J Exp Zool. 1971 Mar;176(3):353–359. doi: 10.1002/jez.1401760310. [DOI] [PubMed] [Google Scholar]
  19. Miyatake T., Chapman T., Partridge L. Mating-induced inhibition of remating in female Mediterranean fruit flies Ceratitis capitata. J Insect Physiol. 1999 Nov;45(11):1021–1028. doi: 10.1016/s0022-1910(99)00083-9. [DOI] [PubMed] [Google Scholar]
  20. Moore P. J., Moore A. J. Reproductive aging and mating: the ticking of the biological clock in female cockroaches. Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9171–9176. doi: 10.1073/pnas.161154598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neubaum D. M., Wolfner M. F. Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics. 1999 Oct;153(2):845–857. doi: 10.1093/genetics/153.2.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nuzhdin S. V., Pasyukova E. G., Morozova E. A., Flavell A. J. Quantitative genetic analysis of copia retrotransposon activity in inbred Drosophila melanogaster lines. Genetics. 1998 Oct;150(2):755–766. doi: 10.1093/genetics/150.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. doi: 10.1098/rspb.1997.0206. [DOI] [PMC free article] [Google Scholar]
  24. doi: 10.1098/rspb.1998.0498. [DOI] [PMC free article] [Google Scholar]
  25. Priest Nicholas K., Mackowiak Benjamin, Promislow Daniel E. L. The role of parental age effects on the evolution of aging. Evolution. 2002 May;56(5):927–935. doi: 10.1111/j.0014-3820.2002.tb01405.x. [DOI] [PubMed] [Google Scholar]
  26. Prout T., Clark A. G. Seminal fluid causes temporarily reduced egg hatch in previously mated females. Proc Biol Sci. 2000 Jan 22;267(1439):201–203. doi: 10.1098/rspb.2000.0988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rice W. R. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6217–6221. doi: 10.1073/pnas.95.11.6217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  29. Sawby R., Hughes K. A. Male genotype affects female longevity in Drosophila melanogaster. Evolution. 2001 Apr;55(4):834–839. doi: 10.1554/0014-3820(2001)055[0834:mgafli]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  30. Service PM. Heterogeneity in Individual Mortality Risk and Its Importance for Evolutionary Studies of Senescence. Am Nat. 2000 Jul;156(1):1–13. doi: 10.1086/303371. [DOI] [PubMed] [Google Scholar]
  31. Snook RR. The risk of sperm competition and the evolution of sperm heteromorphism. Anim Behav. 1998 Dec;56(6):1497–1507. doi: 10.1006/anbe.1998.0930. [DOI] [PubMed] [Google Scholar]
  32. Swanson W. J., Yang Z., Wolfner M. F., Aquadro C. F. Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2509–2514. doi: 10.1073/pnas.051605998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tatar M., Kopelman A., Epstein D., Tu M. P., Yin C. M., Garofalo R. S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001 Apr 6;292(5514):107–110. doi: 10.1126/science.1057987. [DOI] [PubMed] [Google Scholar]
  34. Vaupel J. W., Yashin A. I. Heterogeneity's ruses: some surprising effects of selection on population dynamics. Am Stat. 1985 Aug;39(3):176–185. [PubMed] [Google Scholar]
  35. Waage J. K. Dual function of the damselfly penis: sperm removal and transfer. Science. 1979 Mar 2;203(4383):916–918. doi: 10.1126/science.203.4383.916. [DOI] [PubMed] [Google Scholar]
  36. Ward P. I. Cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.). Evolution. 2000 Oct;54(5):1680–1686. doi: 10.1111/j.0014-3820.2000.tb00712.x. [DOI] [PubMed] [Google Scholar]
  37. Wyckoff G. J., Wang W., Wu C. I. Rapid evolution of male reproductive genes in the descent of man. Nature. 2000 Jan 20;403(6767):304–309. doi: 10.1038/35002070. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES